ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Special Topics & Reviews in Porous Media: An International Journal
ESCI SJR: 0.277 SNIP: 0.52 CiteScore™: 1.3

ISSN 印刷: 2151-4798
ISSN オンライン: 2151-562X

Special Topics & Reviews in Porous Media: An International Journal

DOI: 10.1615/SpecialTopicsRevPorousMedia.2020030318
pages 555-567

IMPURITY TRANSPORT REGIMES IN FRACTURED-POROUS MEDIUM WITH WIDELY-SPACED ADSORBING INCLUSIONS

A. L. Matveev
Nuclear Safety Institute of Russian Academy of Sciences (NSI RAS), 52 Bolshaya Tul'skaya St., Moscow, 115191, Russia
Leonid V. Matveev
Nuclear Safety Institute of Russian Academy of Sciences (NSI RAS), 52 Bolshaya Tul'skaya St., Moscow, 115191, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskii per., Dolgoprudny, Moscow Region, 141700, Russia

要約

Impurity transport in a fractured-porous medium containing a small volume fraction of adsorbing inclusions is considered. Transport regimes are calculated depending on fracture porosity of the medium, characteristic sizes and porosity of blocks, volume fraction occupied by the inclusions, and adsorption coefficient in them. The conditions are specified for which structural peculiarities of the medium significantly affect transport regimes. Transport characteristics at asymptotically large distances from the impurity source are calculated.

参考

  1. Barenblatt, G., Zheltov, Iu., and Kochina, I., Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata], J. Appl. Math. Mech, vol. 24, no. 5, pp. 1286-1303,1960.

  2. Benson, D.A., Schumer, R., Meerschaert, M.M., and Wheatcraft, S.W., Fractional Dispersion, Levy Motion, and the MADE Tracer Tests, Transp. Porous Media, vol. 42, nos. 1-2, pp. 211-240,2001.

  3. Berkowitz, B. and Scher, H., Theory of Anomalous Chemical Transport in Fracture Networks, Phys. Rev. E, vol. 57, no. 5, pp. 5858-5869,1998.

  4. Bolshov, L.A., Kondratenko, P.S., and Matveev, L.V., Colloid-Facilitated Contaminant Transport in Fractal Medium, Phys. Rev E, vol. 84, no. 4, p. 041140,2011.

  5. Bouchaud, J.-P. and Georges, A., Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Ap-plications, Phys. Rep, vol. 195, nos. 4-5, pp. 127-293,1990.

  6. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J., On Matrix Diffusion Formulations, Solution Methods and Qualitative Effects, Hydrogeol. J., vol. 6, no. 1, pp. 178-190,1998.

  7. Chukbar, K.V., Stochastic Transport and Fractional Derivatives, JETP, vol. 81, no. 5, pp. 1025-1029,1995.

  8. Chukbar, K.V., Quasidiffusion of a Passive Scalar, JETP, vol. 82, no. 4, pp. 719-726,1996.

  9. Cvetcovic, V., A General Memory Function for Modeling Mass Transfer in Groundwater Transport, Water Resour. Res., vol. 48, no. 4, p. W04528,2012.

  10. Dentz, M. and Berkowitz, B., Transport Behavior of a Passive Solute in Continuous Time Random Walks and Multirate Mass Transfer, Water Resour. Res., vol. 39, no. 5, p. 1111,2003.

  11. Donado, L.D., Sanchez-Vila, X., Dentz, M., Carrera, J., and Bolster, D., Multicomponent Reactive Transport in Multicontinuum Media, Water Resour. Res., vol. 45, no. 11, p. W11402,2009.

  12. Dong, Ch., Sun, S., and Taylor, G.A., Numerical Modeling of Contaminant Transport in Fractured Porous Media Using Mixed Finite-Element and Finite Volume Method, J. Porous Media, vol. 14, no. 3, pp. 219-242,2011.

  13. Fisher, D.S., Random Walks in Random Environments, Phys. Rev. A, vol. 30, no. 2, pp. 960-964,1984.

  14. Gerke, H.H. and van Genuchten, M.Th., A Dual-Porosity Model for Simulating the Preferential Movement of Water and Solutes in Structured Porous Media, Water Resour. Res., vol. 29, no. 2, pp. 305-319,1993.

  15. Goltz, N.M. and Roberts, P.V., Interpreting Organic Transport Data from a Field Experiment Using Physical Nonequilibrium Models, J. Contam. Hydrol., vol. 1, pp. 77-93,1986.

  16. Harvey, R. and Gorelick, S.M., Multiple-Rate Mass Transfer for Modeling Diffusion and Space Reactions in Media with Pore-Scale Heterogeneity, Water Resour. Res., vol. 31, no. 10, pp. 2383-2400,1995.

  17. Isichenko, M.B., Percolation, Statistical Topography and Transport in Random Media, Rev. Mod. Phys., vol. 64, no. 4, pp. 961-1043,1992.

  18. Kondratenko, P.S. and Matveev, L.V., Asymptotic Regimes and Structure of Concentration Tails in the Dykhne Model, JETP, vol. 104, no. 3, pp. 445-450,2007.

  19. Masciopinto, C. and Passarella, G., Mass-Transfer Impact on Solute Mobility in Porous Media: A New Mobile-Immobile Model, J. Contam. Hydrol., vol. 215, pp. 21-28,2018.

  20. Matveev, L.V., Impurity Transport in a Dual-Porosity Medium with Sorption, JETP, vol. 115, no. 5, pp. 829-836,2012.

  21. Matveev, L.V., Anomalous Nonequilibrium Transport Simulations Using a Model of Statistically Homogeneous Fractured-Porous Medium, Physica A, vol. 406, pp. 119-130,2014.

  22. Muscus, N. and Falta, R.W., Semi-Analytical Method for Matrix Diffusion in Heterogeneous and Fractured Systems with Parent- Daughter Reactions, J. Contam. Hydrol., vol. 218, pp. 94-109,2018.

  23. Nair, V.V. and Thampi, S.G., Numerical Modeling of Contaminant Transport in Sets of Parallel Fractures with Fracture Skin, J. Porous Media, vol. 15, no. 1,pp. 95-100,2012.

  24. Prakash, P. and Nambi, I.M., Dissolution and Contaminant Transport in Aquifers with Spatially and Temporally Variable Hydraulic Properties, Spec. Topics Rev. Porous Media: Int. J., vol. 3, no. 4, pp. 353-369,2012.

  25. Quintard, M., Transfer in Porous Media, Spec. Topics Rev. Porous Media: Int. J., vol. 6, no. 2, pp. 91-108,2015.

  26. Sahimi, M., Flow Phenomena in Rocks: From Continuum Models to Fractals, Percolation, Cellular Automata, and Simulated Annealing, Rev. Mod. Phys., vol. 65, no. 4, pp. 1393-1534,1993.

  27. Sahimi, M., Dispersion in Porous Media, Continuous-Time Random Walks, and Percolation, Phys. Rev. E, vol. 85, no. 1, p. 016316, 2012.

  28. Simunek, J. and van Genuchten, M.Th., Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS, Vadose ZoneJ., vol. 7, no. 2, pp. 728-797,2008.

  29. Willmann, M., Carrera, J., Sanchez-Vila, X., Silva, O., and Dentz, M., Coupling of Mass Transfer and Reactive Transport for Non-Linear Reactions in Heterogeneous Media, Water Resour. Res., vol. 46, no. 7, p. W07512,2010.


Articles with similar content:

MECHANISM UNDERLYING THE FORMATION OF INTERPHASE REGIONS IN ELASTOMER DISPERSELY FILLED COMPOSITES AND ITS DESCRIPTION WITHIN THE FRAMEWORK OF FRACTAL APPROACH
Nanoscience and Technology: An International Journal, Vol.2, 2011, issue 3
G. V. Kozlov, Yuri G. Yanovsky, Yulia N. Karnet
THERMODYNAMIC ANALYSIS OF THE STABILITY OF NANOBUBBLES IN WATER
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 1
Yu. K. Levin, Semen I. Koshoridze
Peculiarities of Functional Morphology of Erythroid Elements of Hemolymph of the Bivalve Mollusk Anadara inaequivalvis, the Black Sea
Hydrobiological Journal, Vol.49, 2013, issue 6
V. N. Novitskaya , A. A. Soldatov
Unrestricted Influx of Nutrients to a Root Community
International Journal of Fluid Mechanics Research, Vol.27, 2000, issue 1
V. L. Polyakov
GAS FLOW AND DIFFUSION IN NANO-SIZED CAPILLARIES AND POROUS BODIES
Nanoscience and Technology: An International Journal, Vol.1, 2010, issue 2
Vjacheslav Roldughin, V. M. Zhdanov