ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Special Topics & Reviews in Porous Media: An International Journal
ESCI SJR: 0.277 SNIP: 0.52 CiteScore™: 1.3

ISSN 印刷: 2151-4798
ISSN オンライン: 2151-562X

Special Topics & Reviews in Porous Media: An International Journal

DOI: 10.1615/SpecialTopicsRevPorousMedia.v2.i2.50
pages 115-124

FACTORS AFFECTING THE GRAVITY DRAINAGE MECHANISM FROM A SINGLE MATRIX BLOCK IN NATURALLY FRACTURED RESERVOIRS

Morteza Dejam
Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071-2000, USA
Mohammad Hossein Ghazanfari
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
Vahid Mashayekhizadeh
Department of Petroleum Engineering, Reservoir Studies Division, National Iranian South Oil Company (NISOC), Main Office Building, Ahvaz, Iran
Mohammadreza Kamyab
Department of Petroleum Engineering, Curtin University, Bentley, WA, Australia

要約

Despite numerous experimental and numerical studies, fundamental understanding of how the matrix block height, the density difference between petroleum and gas, and matrix capillary pressure could affect the oil recovery from a single matrix block in naturally fractured reservoirs remains a topic of debate in the literature. In this work a one-dimensional gravity drainage model developed by Firoozabadi and Ishimoto (1994) is considered and numerically solved. The Fourier series method is applied for a numerical Laplace inversion of the dimensionless mathematical model; this type of inversion method has rarely been used in petroleum applications. The obtained results revealed that by increasing the matrix block height as well as the density difference between oil and gas, both the drainage flow rate and the cumulative production increased. In contrast, by increasing the matrix capillary pressure, both the drainage flow rate and the cumulative production decreased. The findings of this work can be helpful to better understand the behavior of the gravity drainage process in fractured porous media.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF TERTIARY OIL GRAVITY DRAINAGE IN FRACTURED POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 2
Behzad Rostami, M. Rezaveisi, Shahab Ayatollahi, Riyaz Kharrat, C. Ghotbi
EFFECTS OF FRACTURE PROPERTIES ON THE BEHAVIOR OF FREE-FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES
Journal of Porous Media, Vol.15, 2012, issue 4
Nima Rezaei, Sohrab Zendehboudi, Ioannis Chatzis
WETTABILITY EFFECTS IN GAS GRAVITY—ASSISTED FLOW AS RELATED TO DISPLACEMENT INSTABILITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 1
Behzad Rostami, V. Alipour Tabrizy, Riyaz Kharrat, C. Ghotbi, M. Khosravi
TRAVELING WAVE ANALYSIS OF COCURRENT IMBIBITION IN POROUS MEDIA
Journal of Porous Media, Vol.17, 2014, issue 3
Nikoo Khademi, Hadi Saboorian-Jooybari
A FULL APPROXIMATE ANALYTIC SOLUTION TO THE PROBLEM OF SPONTANEOUS IMBIBITION IN POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
Abouzar Mirzaei-Paiaman