ライブラリ登録: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

年間 6 号発行

ISSN 印刷: 0743-4863

ISSN オンライン: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Microformulations and Nanoformulations of Doxorubicin for Improvement of Its Therapeutic Efficiency

巻 37, 発行 6, 2020, pp. 591-611
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020034470
Get accessGet access

要約

Non-selectivity and dose-dependent side effects of doxorubicin (DOX), particularly cardio-toxicology as well as multidrug resistance in various tumor cells, have increased the demand for novel formulations with suitable efficiency and safety. Microformulations and nanoformulations have been shown to have satisfactory responses compared with that of conventional formulations. In this review, recent advances alongside the advantages and disadvantages of microformulations and nanoformulations are discussed. Doxil and Caelyx (PEGylated forms) as well as Myocet (non-PEGylated form) are presented as approved liposomal forms by the U.S. Food and Drug Administration to increase blood circulation half-life of DOX. Liposomes, micelles, hydrogels, lipid nanoparticles (NPs), polymeric NPs, polymersomes, metal/metal oxide NPs, mesoporous silica NPs, carbon-based NPs, and quantum dots are all major carriers for DOX and discussed accordingly. Considering all extracellular and intracellular conditions of cancer cells is an indispensable affair to obtain promising DOX carriers. Lack of a comprehensive related to drug-resistance cancer cells particularly in metastasis stages is an important hindrance to get acceptable results. Understanding of the drug resistance mechanisms in cancers cells particularly, in metastasis stages, is a critical factor to prepare efficient formulations.

参考
  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer Clin. 2019;69(1):7-34.

  2. Ahmad SNS, Sanajou D, Kalantary-Charvadeh A, Hosseini V, Roshangar L, Khojastehfard M, Haiaty S, Mesgari-Abbasi M. P-LAPachone ameliorates doxorubicin-induced cardiotoxicity via regulating autophagy and Nrf2 signalling pathways in mice. Basic Clin Pharmacol Toxicol. 2020;126:364-73.

  3. Gill H, Vasundhara M. Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J Microbiol Biotechnol. 2019;35(5):1-8.

  4. Rastegari AA, Yadav AN, Yadav N. Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A, editors. New and future developments in microbial biotechnology and bioengi- neering. New York: Elsevier; 2019. p. 13-29.

  5. Pandit A, Khare L, Devarajan PV, Jain R, Dandekar P. Breast cancer receptors and targeting strategies. In: Devarajan P, Dandekar P, D'Souza AA, editors. Targeted intracellular drug delivery by receptor mediated endocytosis. New York: Springer; 2019. p. 79-108.

  6. Ernani V, Jahan R, Smith LM, Marr AS, Kimbrough SE, Kos ME, Tijerina J, Pivovar S, Lakshmanan I, Ketcham M. A phase I study of weekly doxorubicin and oral topotecan for patients with relapsed or refractory small cell lung cancer (SCLC): A Fred and Pamela Buffet Cancer Center Clinical Trials Network study. Cancer Treat Res Comm. 2020;22:100162.

  7. Liu C, Zhao Y, Wang J, Yang Y, Zhang Y, Qu X, Peng S, Yao Z, Zhao S, He B. FoxO3 reverses 5-fluorouracil resistance in human colorectal cancer cells by inhibiting the Nrf2/TR1 signaling pathway. Cancer Let. 2020;470(1):29-42.

  8. Llach A, Mazevet M, Mateo P, Villejouvert O, Ridoux A, Rucker-Martin C, Ribeiro M, Fischmeister R, Crozatier B, Benitah J-P. Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity. J Mol Cellular Cardio. 2019;126:129-39.

  9. Peng W, Rao D, Zhang M, Shi Y, Wu J, Nie G, Xia Q. Teneligliptin prevents doxorubicin-induced inflammation and apoptosis in H9c2 cells. Arch Biochem Biophys. 2019;683:108238.

  10. Rice BA, Ver Hoeve ES, DeLuca AN, Esserman LJ, Rugo HS, Melisko ME. Registry study to assess hair loss prevention with the Penguin Cold Cap in breast cancer patients receiving chemotherapy. Breast Cancer Res Treat. 2018;167(1):117-22.

  11. Baig MMFA, Lai W-F, Ahsan A, Jabeen M, Farooq MA, Mikrani R, Abbas M, Naveed M, Kassim SA, Raza F. Synthesis of ligand functionalized ErbB-3 targeted novel DNA nano-threads loaded with the low dose of doxorubicin for efficient in vitro evaluation of the resistant anti-cancer activity. Pharm Res. 2020;37:1-12.

  12. Zhang Y, Xiao Y, Huang Y, He Y, Xu Y, Lu W, Yu J. Poly (ethylene glycol) shell-sheddable TAT-modified core cross-linked nano-micelles: TAT-enhanced cellular uptake and lysosomal pH-triggered doxorubicin release. Colloid Surface B. 2020;188:110772.

  13. Abd-Rabou AA, Ahmed HH, Shalby AB. Selenium overcomes doxorubicin resistance in their nano-platforms against breast and colon cancers. Biol Trace Elem Res. 2020;193(2):377-89.

  14. Pillai G. Nanotechnology toward treating cancer. In: Mohapatra S, Ranjan S, Dasgupta N, Kumar R, Thomas S, editors. Applications of targeted nano drugs and delivery systems. New York: Elsevier; 2019. p. 221-56.

  15. Bose T, Latawiec D, Mondal PP, Mandal S. Overview of nano-drugs characteristics for clinical application: The journey from the entry to the exit point. J Nanopart Res. 2014;16(8):2527.

  16. Patil RR, Guhagarkar SA, Devarajan PV. Engineered nanocarriers of doxorubicin: A current update. Crit Rev Ther Drug. 2008;25:1-61.

  17. Jain A, Tiwari A, Verma A, Saraf S, Jain SK. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug. 2020;37:105-34.

  18. Li M, Du C, Guo N, Teng Y, Meng X, Sun H, Li S, Yu P, Galons H. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164(15):640-53.

  19. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, Szebeni J, Ishida T. PEGylated liposomes: Immunological responses. Sci Technol Adv Mat. 2019;20(1):710-24.

  20. Yang Q, Lai SK. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):655-77.

  21. Sharma VK, Jain A, Soni V. Nano-aggregates: Emerging delivery tools for tumor therapy. Crit Rev Ther Drug. 2013;30:535-63.

  22. Wang Q, Zou C, Wang L, Gao X, Wu J, Tan S, Wu G. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater. 2019;94:469-81.

  23. Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol. 2016;3(1):57-9.

  24. Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, Yi H, Wang YA, Yang L, Mao H. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T 1-T 2 switchable magnetic resonance imaging contrast. ACS Nano. 2017;11(5):4582-92.

  25. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng. 2019;98:1252-76.

  26. Yoshikawa T, Mori Y, Feng H, Phan KQ, Kishimura A, Kang J-H, Mori T, Katayama Y. Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int J Pharm. 2019;565:481-7.

  27. Xu Y, Ajji A, Heuzey M-C. Response behaviors and mechanical strength of thermal responsive hydrogels fabricated by electrospinning. Polymer. 2019;183:121880.

  28. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015;6(2):105-21.

  29. Elsayed MM. Hydrogel preparation technologies: Relevance kinetics, thermodynamics and scaling up aspects. J Polym Environ. 2019;27(4):871-91.

  30. Ariaeenejad S, Motamedi E, Salekdeh GH. Stable cellulase immobilized on graphene oxide@ CMC-g-poly (AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass. Carbohydr Polym. 2020; 230:115661.

  31. Huang B, Li X, Zhang W, Fu C, Wang Y, Fu S. Study on demulsification-flocculation mechanism of oil-water emulsion in produced water from alkali/surfactant/polymer flooding. Polymers. 2019;11(3):395.

  32. Alliod O, Messager L, Fessi H, Dupin D, Charcosset C. Influence of viscosity for oil-in-water and water-in-oil nanoemulsions production by SPG premix membrane emulsification. Chem Eng Res Des. 2019;142:87-99.

  33. Michelon M, Huang Y, de la Torre LG, Weitz DA, Cunha RL. Single-step microfluidic production of W/O/W double emulsions as templates for P-carotene-oaded giant liposomes formation. Chem Eng. 2019;366:27-32.

  34. Chevalier Y, Bolzinger M-A. Micelles and nanoemulsions. In: Cornier J, Keck CM, Van de Voorde M, editors. Nanocosmetics. New York: Springer; 2019. p. 47-72.

  35. Langevin D. Coalescence in foams and emulsions: Similarities and differences. Curr Opin Colloid Interface Sci. 2019;44:23-31.

  36. Shibaev AV, KuklinAI, Philippova OE. Different responsiveness to hydrocarbons of linear and branched anionic/cationic-mixed wormlike surfactant micelles. Colloid Polym Sci. 2019;297(3):351-62.

  37. Jang T, Lee G, Lee S, Lee J, Pang Y. Photophysical properties of 1, 2-dihydroxyanthraquinone in AOT reverse micelles. J Mol Liq. 2019;279:503-9.

  38. Li X, Gao Y, Boott CE, Winnik MA, Manners I. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nat Commun. 2015;6: 8127.

  39. Gould OEC, Qiu H, Lunn DJ, Rowden J, Harniman RL, Hudson ZM, Winnik MA, Miles MJ, Manners I. Transformation and patterning of supermicelles using dynamic holographic assembly. Nat Commun. 2015:10009(6):1-7.

  40. Ullah F, Javed F, Othman MBH, Rehman SU, Ahmad Z, Akil HM. Star-shaped self-assembled micelles of block copolymer [chitosan-co-poly (ethylene glycol) methyl ether methacrylate] hydrogel for hydrophobic drug delivery. Polym Bull. 2018;75(6):2243-64.

  41. Pippa N, Pispas S, Demetzos C. Recent advances in micellar-like polyelectrolyte/protein complexes: Design and development of biopharmaceutical vehicles. In: Grumezescu AM, editor. Design and development of new nanocarriers. New York: Elsevier; 2018. p. 57-88.

  42. Wang Y, Luo Q, Zhu W, Li X, Shen Z. Reduction/pH dual-responsive nano-prodrug micelles for controlled drug delivery. Polym Chem. 2016;7(15):2665-73.

  43. Cagel M, Grotz E, Bernabeu E, Moretton MA, Chiappetta DA. Doxorubicin: Nanotechnological overviews from bench to bedside. Drug Discov Today. 2017;22(2):270-81.

  44. Hamblin MR. Drug efflux pumps in photodynamic therapy. In: Sosnik A, Bendayan R, editors. Drug efflux pumps in cancer resistance pathways: From molecular recognition and characterization to possible inhibition strategies in chemotherapy. New York: Elsevier; 2020. p. 251-76.

  45. Wu L, Cao K, Ni Z, Wang S, Li W, Liu X, Chen Z. Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening. BioFactors. 2019;45(1):85-96.

  46. Han N-N, Li X, Tao L, Zhou Q. Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer. Biochem Biophys Res Commun. 2018;498(1):178-85.

  47. Ma Y, Fan X, Li L. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydr Polym. 2016;137:19-29.

  48. Ma B, Zhuang W, Wang Y, Luo R, Wang Y. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomater. 2018;70:186-96.

  49. Ahmadi F, Bahmyari M, Akbarizadeh A, Alipour S. Doxorubicin-verapamil dual loaded PLGA nanoparticles for overcoming P-glycoprotein mediated resistance in cancer: Effect of verapamil con-centration. J Drug Deliv Sci Tech. 2019;53:101206.

  50. Mu Y, Wu G, Su C, Dong Y, Zhang K, Li J, Sun X, Li Y, Chen X, Feng C. pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydr Polym. 2019;223:115072.

  51. Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3-9.

  52. Dong Y-D, Tchung E, Nowell C, Kaga S, Leong N, Mehta D, Kaminskas LM, Boyd BJ. Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J Liposome Res. 2019;29(1):1-9.

  53. Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Personalize Ther. 2019;34(1):1-8.

  54. El-Hamid ESA, Gamal-Eldeen AM, Sharaf Eldeen AM. Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL-27 cells. Arch Oral Biol. 2019;103:47-54.

  55. Shen Z, Fisher A, Liu WK, Li Y. PEGylated "stealth" nanoparticles and liposomes. In: Parambath A, editor. Engineering of biomaterials for drug delivery systems. New York: Elsevier; 2018. p. 1-26.

  56. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil(R), Caelyx(R), DOXOrubicin, and SinaDoxosome. J Control Release. 2016;221:1-8.

  57. Xie Q, Deng W, Yuan X, Wang H, Ma Z, Wu B, Zhang X. Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. Eur J Pharm Biopharm. 2018;122:87-95.

  58. Dash TK, Konkimalla VB. Formulation and optimization of doxorubicin and biochanin a combinational liposomes for reversal of chemoresistance. AAPS PharmSciTech. 2017;18(4):1116-24.

  59. Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep. 2016;43(2):99-105.

  60. Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24(10):1783-96.

  61. Fox E, Oliver T, Rowe M, Thomas S, Zakharia Y, Gilman PB, Muller AJ, Prendergast GC. Indoximod: An immunometabolic adjuvant that empowers T cell activity in cancer. Front Oncol. 2018;8:1-12.

  62. Lu J, Liu X, Liao Y-P, Wang X, Ahmed A, Jiang W, Ji Y, Meng H, Nel AE. Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano. 2018;12(11):11041-61.

  63. Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci. 2018;2018:6847971.

  64. Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.

  65. Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18-39.

  66. Hemati M, Haghiralsadat F, Yazdian F, Jafari F, Moradi A, Malekpour-Dehkordi Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif Cell Nanomed B. 2019;47(1):1295-311.

  67. Joshi MD, Prabhu RH, Patravale VB. Fabrication of nanostructured lipid carriers (NLC)-based gels from microemulsion template for delivery through skin. Methods Mol Biol. 2019;2000:279-92.

  68. Jose J, Netto G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol. 2019;18(1):315-21.

  69. Zhang Y, Zhang P, Zhu T. Ovarian carcinoma biological nanotherapy: Comparison of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for cisplatin delivery. Biomed Pharmacother. 2019;109:475-83.

  70. Ganesan P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37-56.

  71. Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl. 2017;80:771-84.

  72. Nauman N, Zaquen N, Junkers T, Boyer C, Zetterlund PB. Particle size control in miniemulsion po-lymerization via membrane emulsification. Macromolecules. 2019;52(12):4492-9.

  73. Jacobs J, Pavlovic De, Prydderch H, Moradi M-A, Ibarboure E, Heuts JPA, Lecommandoux S, Heise A. Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides. J Am Chem Soc. 2019;141(32):12522-6.

  74. Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci. 2019;269:152-86.

  75. Farrag Y, Montero B, Rico M, Barral L, Bouza R. Preparation and characterization of nano and micro particles of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via emulsification/solvent evaporation and nanoprecipitation techniques. J Nanoparticle Res. 2018;20(3):1-17.

  76. Turk M, Erkey C. Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: Current state, further perspectives and needs. J Supercrit Fluid. 2018;134:176-83.

  77. Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, Zandieh-Doulabi B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater. 2018;67(6):383-400.

  78. Long Y, Huang X, Gao Y, Chen L, Song F, Zhang H. Swelling mechanism of core-shell polymeric nanoparticles and their application in enhanced oil recovery for low-permeability reservoirs. Energ Fuel. 2019;33(4):3077-88.

  79. Chai F, Sun L, He X, Li J, Liu Y, Xiong F, Ge L, Webster TJ, Zheng C. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int J Nanomed. 2017;12:1791-802.

  80. Keating E, Martel F. Antimetabolic effects of polyphenols in breast cancer cells: Focus on glucose uptake and metabolism. Front Nutr. 2018;5:1-11.

  81. Schwartsburd P. Cancer-induced reprogramming of host glucose metabolism:"vicious cycle" supporting cancer progression. Front Oncol. 2019;9:218.

  82. Lee SJ, Kang M-S, Oh J-S, Jeong Y-I, Park I-K, Lee HC. Nano-aggregates of Doxorubicin-conjugated methoxy Poly (ethylene glycol)-b-Carboxymethyl dextran copolymer. J Nanosci Nanotechnol. 2015;15(8):5566-70.

  83. Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: Transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm. 2016;42(10):1590-9.

  84. Fang Y, Wang H, Dou H-J, Fan X, Fei X-C, Wang L, Cheng S, Janin A, Wang L, Zhao W-L. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int J Nanomed. 2018;13:5673-83.

  85. Kirtane AR, Narayan P, Liu G, Panyam J. Polymer-surfactant nanoparticles for improving oral bio-availability of doxorubicin. Int J Pharm Invest. 2017;47(1):65-73.

  86. Asim MH, Moghadam A, Ijaz M, Mahmood A, Gotz RX, Matuszczak B, Bernkop-Schnurch A. S-protected thiolated cyclodextrins as mucoadhesive oligomers for drug delivery. J Colloid Interface Sci. 2018;531:261-8.

  87. Oliveri V, Bellia F, Viale M, Maric I, Vecchio G. Linear polymers of p and y cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym. 2017;177:355-60.

  88. Zaal EA, Berkers CR. The influence of metabolism on drug response in cancer. Front Oncol. 2018;8:500.

  89. Huang J, Xu Y, Xiao H, Xiao Z, Guo Y, Cheng D, Shuai X. Core-shell distinct nanodrug showing on-demand sequential drug release to act on multiple cell types for synergistic anticancer therapy. ACS Nano. 2019;13(6):7036-49.

  90. Zhou Z, Kennell C, Jafari M, Lee J-Y, Ruiz-Torres SJ, Waltz SE, Lee J-H. Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle. Int J Pharm. 2017;530(1-2):300-7.

  91. Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem Soc Rev. 2018;47(23):8572-610.

  92. Liu X, Yaszemski MJ, Lu L. Expansile crosslinked polymersomes for pH sensitive delivery of doxorubicin. Biomater Sci. 2016;4(2):245-9.

  93. Nehate C, Nayal A, Koul V. Redox responsive polymersomes for enhanced doxorubicin delivery. ACS Biomater Sci Eng. 2019;5(1):70-80.

  94. Asadi N, Taran M, Rad M, Alavi M. Effects of glucose, metformin, and protein on formation of flower-like nanocomposites of struvite in infected artificial urine medium by methicillin-resistant staphylococcus aureus (MRSA): New report. Nano Biomed Eng. 2019;11(1):91-7.

  95. Taran M, Rad M, Alavi M. Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by Bacillus sp. FU4: Optimization of experiment design. Pharm Sci. 2017;23(3):198-206.

  96. Taran M, Rad M, Alavi M. Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts. 2018;8(2):65-74.

  97. Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomater. 2015;5(2):1004-21.

  98. Taran M, Rad M, Alavi M. Characterization of Ag nanoparticles biosynthesized by Bacillus sp. HAI4 in different conditions and their antibacterial effects. J App Pharm Sc. 2016;6(11):094-9.

  99. Alavi M, Karimi N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag-TiO2, TiO2-Ag, Ag-Cu and Cu-Ag nanocomposites against multi-drug-resistant bacteria. Artif Cell Nanomed Biotechnol. 2018;46:S399-413.

  100. Rad M, Taran M, Alavi M. Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomed Eng. 2018;10(1):25-33.

  101. Alavi M, Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Exp Rev Anti-Infect Ther. 2019;17(6):419-28.

  102. Zeng C, Chen Y, Zhao S, Jin R. Atomically precise gold and bimetal nanoclusters as new model catalysts. In: Fornasiero P, Cargnello M, editors. Studies in surface science and catalysis. New York: Elsevier; 2017. p. 359-408.

  103. Fu C, Ding C, Sun X, Fu A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. Mater Sci Eng. 2018;87:149-54.

  104. Zhang H, Liu H, Tian Z, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto KK, Yang P. Bacteria photosensi-tized by intracellular gold nanoclusters for solar fuel production. Nat Nanotechnol. 2018;13(10):900-5.

  105. Zhang Q, Yang M, Zhu Y, Mao C. Metallic nanoclusters for cancer imaging and therapy. Curr Med Chem. 2018;25(12):1379-96.

  106. Shahsavari S, Hadian-Ghazvini S, Saboor FH, Oskouie IM, Hasany M, Simchi A, Rogach AL. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics. Mater Chem Front. 2019;3(11):2326-56.

  107. Jeon MJ, Gordon AC, Larson AC, Chung JW, Kim YI, Kim D-H. Transcatheter intra-arterial infusion of doxorubicin loaded porous magnetic nano-clusters with iodinated oil for the treatment of liver cancer. Biomaterials. 2016;88:25-33.

  108. Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl Mater Interfaces. 2018;10(4):3282-94.

  109. Buttacavoli M, Albanese NN, Di Cara G, Alduina R, Faleri C, Gallo M, Pizzolanti G, Gallo G, Feo S, Baldi F, Cancemi P. Anticancer activity of biogenerated silver nanoparticles: An integrated proteomic investigation. Oncotarget. 2017;9(11):9685-705.

  110. Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym. 2019;227:1-6.

  111. Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front Pharmacol. 2019;9:1-16.

  112. Wang L, Yu D, Dai R, Fu D, Li W, Guo Z, Cui C, Xu J, Shen S, Ma K. PEGylated doxorubicin cloaked nano-graphene oxide for dual-responsive photochemical therapy. Int J Pharm. 2019;557:66-73.

  113. Vovusha H, Banerjee D, Yadav MK, Perrozzi F, Ottaviano L, Sanyal S, Sanyal B. Binding characteristics of anticancer drug doxorubicin with two-dimensional graphene and graphene oxide: Insights from density functional theory calculations and fluorescence spectroscopy. J Phys Chem. 2018;122(36):21031-8.

  114. Tajvar S, Mohammadi S, Askari A, Janfaza S, Nikkhah M, Tamjid E, Hosseinkhani S. Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects. J Liposome Res. 2019;29(2):163-70.

  115. Yang S-T, Luo J, Zhou Q, Wang H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics. 2012;2(3):271-282.

  116. Shan X, Mao J, Long M, Ahmed KS, Sun C, Qiu L, Chen J. Influence of polyethylene glycol molecular weight on the anticancer drug delivery of pH-sensitive polymeric micelle. J Appl Polym Sci. 2019;136(32):1-8.

  117. Matyszewska D, Napora E, Zelechowska K, Biernat JF, Bilewicz R. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes. J Nanopart Res. 2018;20(5):143.

  118. Tayama M, Inose T, Yamauchi N, Nakashima K, Tokunaga M, Kato C, Hatoyama K, Kamei T, Gonda K, Kobayashi Y. Fabrication and dual-modal imaging properties of quantum dot/silica core-shell particles with immobilized single-nanometer-sized gold nanoparticles. Colloids Surf A Physicochem Eng Asp. 2019;574:162-70.

  119. Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nano-composite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng. 2018;87:50-9.

  120. Havanur S, Batish I, Cheruku SP, Gourishetti K, JagadeeshBabu PE, Kumar N. Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Mater Sci Eng C Mater Biol Appl. 2019;105:110094.

  121. Mehmood A, Ghafar H, Yaqoob S, Gohar UF, Ahmad B. Mesoporous silica nanoparticles: A review. J Dev Drugs. 2017;6(02):1-14.

  122. Ghosh S. Chapter 9: Mesoporous silica-based nano drug-delivery system synthesis, characterization, and applications. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Nanocarriers for drug delivery. New York: Elsevier; 2019. p. 285-317.

  123. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):1-49.

  124. Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. 2013;42(9):3862-75.

  125. Reddy KL, Sharma PK, Singh A, Kumar A, Shankar KR, Singh Y, Garg N, Krishnan V. Amine-functionalized, porous silica-coated NaYF4:Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin. Mater Sci Eng. 2019;96:86-95.

  126. Hakeem A, Zahid F, Duan R, Asif M, Zhang T, Zhang Z, Cheng Y, Lou X, Xia F. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: Intracellular accumulation and stimuli responsive doxorubicin release. Nanoscale. 2016;8(9):5089-97.

  127. Zhang P, Kong J. Doxorubicin-tethered fluorescent silica nanoparticles for pH-responsive anticancer drug delivery. Talanta. 2015;134:501-7.

  128. Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano. 2011;5(12):9788-98.

  129. Monem AS, Elbialy N, Mohamed N. Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy. Int J Pharm. 2014;470(1-2):1-7.

  130. Rahmani S, Durand J-O, Charnay C, Lichon L, Ferid M, Garcia M, Gary-Bobo M. Synthesis of mesoporous silica nanoparticles and nanorods: Application to doxorubicin delivery. Solid State Sci. 2017;68:25-31.

  131. Jiang A, Song B, Ji X, Peng F, Wang H, Su Y, He Y. Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res. 2018;11(4):2285-94.

  132. Tu X, Wang L, Cao Y, Ma Y, Shen H, Zhang M, Zhang Z. Efficient cancer ablation by combined photothermal and enhanced chemo-therapy based on carbon nanoparticles/doxorubicin@ SiO2 nano- composites. Carbon. 2016;97:35-44.

  133. Srivastava P, Hira SK, Srivastava DN, Gupta U, Sen P, Singh RA, Manna PP. Protease-responsive targeted delivery of doxorubicin from bilirubin-BSA-capped mesoporous silica nanoparticles against colon cancer. ACS Biomater Sci Eng. 2017;3(12):3376-85.

によって引用された
  1. Rahdar Abbas, Sargazi Saman, Barani Mahmood, Shahraki Sheida, Sabir Fakhara, Aboudzadeh M., Lignin-Stabilized Doxorubicin Microemulsions: Synthesis, Physical Characterization, and In Vitro Assessments, Polymers, 13, 4, 2021. Crossref

  2. Alavi Mehran, Varma Rajender S., Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances, Sustainable Chemistry and Pharmacy, 21, 2021. Crossref

  3. Alavi Mehran, Kennedy John F., Recent advances of fabricated and modified Ag, Cu, CuO and ZnO nanoparticles by herbal secondary metabolites, cellulose and pectin polymers for antimicrobial applications, Cellulose, 28, 6, 2021. Crossref

  4. Zorić Lara, Drinković Nikša, Micek Vedran, Frkanec Leo, Türeli Akif Emre, Günday-Türeli Nazende, Vinković Vrček Ivana, Frkanec Ruža, High-Throughput Method for the Simultaneous Determination of Doxorubicin Metabolites in Rat Urine after Treatment with Different Drug Nanoformulations, Molecules, 27, 4, 2022. Crossref

  5. Mirzaei Sepideh, Gholami Mohammad Hossein, Hashemi Farid, Zabolian Amirhossein, Farahani Mahdi Vasheghani, Hushmandi Kiavash, Zarrabi Ali, Goldman Aaron, Ashrafizadeh Milad, Orive Gorka, Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects, Drug Discovery Today, 27, 2, 2022. Crossref

  6. Alavi Mehran, Rai Mahendra, Strategies on functionalization of organic and inorganic nanocarriers to inactivate SARS-CoV-2, in Nanotechnological Applications in Virology, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain