ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Therapeutic Drug Carrier Systems
インパクトファクター: 2.9 5年インパクトファクター: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 印刷: 0743-4863
ISSN オンライン: 2162-660X

巻:
巻 36, 2019 巻 35, 2018 巻 34, 2017 巻 33, 2016 巻 32, 2015 巻 31, 2014 巻 30, 2013 巻 29, 2012 巻 28, 2011 巻 27, 2010 巻 26, 2009 巻 25, 2008 巻 24, 2007 巻 23, 2006 巻 22, 2005 巻 21, 2004 巻 20, 2003 巻 19, 2002 巻 18, 2001 巻 17, 2000 巻 16, 1999 巻 15, 1998 巻 14, 1997 巻 13, 1996 巻 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v18.i5.20
43 pages

Multifunctional Matrices for Oral Peptide Delivery

Andreas Bernkop-Schnurch
Institute of Pharmaceutical Technology and Biopharmaceutics, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
Greg Walker
Institute of Pharmaceutical Technology and Biopharmaceutics, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria

要約

The oral administration of peptide drugs represents one of the greatest challenges in pharmaceutical technology. To gain a sufficient bioavailability of these therapeutic agents, various barriers including the mucus-layer barrier, the enzymatic barrier, and the membrane barrier have to be overcome. A promising strategy for achieving this goal is the use of multifunctional matrices. These matrices are based on polymers that display mucoadhesive properties, a permeation-enhancing effect, enzyme-inhibiting properties, and/or a high buffer capacity. Moreover, a sustained or delayed drug release can be provided by delivery systems that contain such polymers. Among them, polyacrylates, cellulose derivatives, and chitosan are promising excipients that can also be customized by chemical modification to improve certain properties.For example, the covalent attachment of thiol moieties on these polymers leads to improved mucoadhesive and permeation-enhancing properties, and the conjugation of enzyme inhibitors enables the matrices to provide protection for peptide drugs against enzymatic degradation. The efficacy of multifunctional matrices in oral peptide delivery has been verified by various in vivo studies that could pave the way for the development of commercially viable formulations.


Articles with similar content:

Lipid Materials for Topical and Transdermal Delivery of Nanoemulsions
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 5
R. Jayachandra Babu, Kasturi R. Pawar
A Review of the Application of Lipid-Based Systems in Systemic, Dermal/ Transdermal, and Ocular Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.25, 2008, issue 6
Kishor M. Wasan, Pavel Gershkovich, Cheri A. Barta
Microemulsions: Applications in Transdermal and Dermal Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 6
Vandana B. Patravale, Abhijit A. Date
Oral Absorption Promoters: Opportunities, Issues, and Challenges
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 5
Sushilkumar Patil, Girish Kore, Atul Kolate, Chetan Yewale, Ambikanandan Misra
Recent Advances in Self-Emulsifying Drug Delivery Systems (SEDDS)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 2
Premjeet Singh Sandhu, Ravinder Kaur, Sarwar Beg, Bhupinder Singh, Om Parkash Katare, Rajneet Kaur Khurana