ライブラリ登録: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

年間 6 号発行

ISSN 印刷: 0743-4863

ISSN オンライン: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Solid Lipid Nanoparticles: Vital Characteristics and Prospective Applications in Cancer Treatment

巻 36, 発行 6, 2019, pp. 537-581
DOI: 10.1615/CritRevTherDrugCarrierSyst.2019020396
Get accessGet access

要約

Cancer nanotechnology is a new field of interdisciplinary research cutting across biology, chemistry, engineering, and medicine, aiming to lead to major advances in cancer treatment. Over the past several years, solid lipid nanoparticles (SLNs) have attracted the interest of researchers due to their ability to overcome the limitations of classic chemotherapeutics. We reviewed the most recent data on the therapeutic use of SLNs in oncology, presenting their main advantages and disadvantages, along with various production methods and different routes of administration. In accordance with these aspects, the long-term physical stability, the controlled release of the loaded drugs, and the efficient targeted delivery of drugs as methods of surpassing the pharmaceutical limitations of anticancer drugs, natural products and gene therapy have been discussed. In addition, we have also emphasized briefly the crosstalk between SLNs and the new trend in oncology, immunotherapy, as future possible antineoplastic treatment, especially in melanoma. This review highlights the potential of SLNs in providing very positive perspectives for future cancer treatment by improving the efficiency of present chemotherapy and reducing its side effects. SLNs allow targeted delivery of anticancer drugs and could improve the efficiency of current chemotherapy in neoplasia.

参考
  1. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010; 62(2):90-9.

  2. Kaur T, Slavcev RA. Solid lipid nanoparticles: tuneable anti-cancer gene/drug delivery systems. In: Wei M, Good D, editors. Novel gene therapy approaches. IntechOpen; 2013. doi: 10.5772/54781.

  3. Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerf. 2011;88(1):483-9.

  4. Kapse-Mistry S, Govender T, Srivastava R, Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol. 2014;5:159.

  5. Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2014;9:1025-37.

  6. Doktorovova S, Santos DL, Costa I, Andreani T, Souto EB, Silva AM. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int J Pharm. 2014;471(1-2):18-27.

  7. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349-58.

  8. Tran TH, Choi JY, Ramasamy T, Truong DH, Nguyen CN, Choi HG, Yong CS, Kim JO. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinistat to CD44 overexpressing cancer cells. Carbohydr Polym. 2014;114:407-15.

  9. Guney G, Kutlu HM, Genf L. Preparation and characterization of acid ascorbic loaded solid lipid nanoparticles and investigation of their apoptotic effects. Colloids Surf B Biointerf. 2014;121:270-80.

  10. Jose S, Anju SS, Cinu TA, Aleykutty NA, Thomas S, Souto EB. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm. 2014;474(1-2):6-13.

  11. Ramalingam P, Ko YT. A validated LC-MS/MS method for quantitative analysis of curcumin in mouse plasma and brain tissue and its application in pharmacokinetic and brain distribution studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;969:101-8.

  12. Wang J, Zhu R, Sun X, Zhu Y, Liu H, Wang SL. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. Int J Nanomed. 2014;9:3987-98.

  13. Acevedo-Morantes CY, Acevedo-Morantes MT, Suleiman-Rosado D, Ramirez-Vick JE. Evaluation of the cytotoxic effect of campothecin solid lipid nanoparticles on MCF7 cells. Drug Deliv. 2013;20(8):338-48.

  14. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607-12.

  15. Zambrano-Zaragoza ML, Gonzalez-Reza R, Mendoza-Munoz N, Miranda-Linares V, Bernal-Couoh TF, Mendoza-Elvira S, Quintanar-Guerrero D. Nanosystems in edible coatings: a novel strategy for food preservation. Int J Mol Sci. 2018;19:705.

  16. Albuquerque J, Moura CC, Sarmento B, Reis S. Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules. 2015;20:11103-18.

  17. Oliveira RR, Carriao MS, Pacheco MT, Branquinho LC, De Souza ALR, Bakuzis AF, Lima EM Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia. Mater Sci Eng C Mater Biol Appl. 2018;92:547-53.

  18. Ayan AK, Yenilmez A, Eroglu H. Evaluation of radiolabeled curcumin-loaded solid lipid nanoparticles usage as an imaging agent in liver-spleen scintigraphy. Mater Sci Eng C Mater Biol Appl. 2017;75:663-70.

  19. Kuang Y, Zhang K, Cao X, Wang K, Liu M, Pei R. Hydrophobic IR-780 dye encapsulated in cRGD-conjugated solid lipid nanoparticles for NIR imaging-guided photothermal therapy. ACS Appl Mater Interf. 2017;9(14):2217-2260.

  20. Kakadia P, Conway B. Solid lipid nanoparticles: a potential approach for dermal drug delivery. Am J Pharmacol Sci. 2014;2(5A). doi: 10.12691/ajps-2-5A-1.

  21. Vivek K, Reddy H, Murthy RS. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2007;8(4):16-24.

  22. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161-77.

  23. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed. 2007;2(3):289-300.

  24. Svilenov H, Tzachev C. Solid lipid nanoparticles - a promising drug delivery system. Nanomedicine. 2014;8:188-237.

  25. Gasco MR, inventor and assignee. Method for producing solid lipid microspheres having a narrow size distribution. US patent US5250236A. 5 Oct 1993.

  26. Igartua M, Saulnier P, Heurtault B, Pech B, Proust JE, Pedraz JL, Benoit JP. Development and char-acterization of solid lipid nanoparticles loaded with magnetite. Int J Pharm. 2002;233(1-2):149-57.

  27. Shah RM, Malherbe F, Eldridge D, Palombo EA, Harding IH. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J Colloid Interf Sci. 2014;428:286-94.

  28. Freitas C, Mullera RH. Spray-drying of solid lipid nanoparticles (SLN TM). Eur J Pharm Biopharm. 1998;46(2):145-51.

  29. Ohshima H, Miyagishima A, Kurita T, Makino Y, Iwao Y, Sonobe T, Itai S. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Int J Pharm. 2009;377(1-2):180-4.

  30. Omwoyo WN, Ogutu B, Oloo F, Swai H, Kalombo L, Melariri P, Mahanga GM, Gathirwa JW. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomed. 2014;9:3865-74.

  31. Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X, Yang Y, Zhou Z, Li L, Huang Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur J Pharm Biopharm. 2014;88(2):518-28.

  32. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62-76.

  33. Grabnar PA, Kristl J, Smid-Korbar J. Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersions. Acta Pharmaceutica. 1998;48(4):259-267.

  34. Charcosset C, El-Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release. 2005;108(1):112-20.

  35. Neha Y, Sunil K, Udai Vir Singh S. Solid lipid nanoparticles - a review. Intern J Appl Pharm. 2013;5(2):8-18.

  36. Shahgaldian P. Da Silva E, Coleman AW, Rather B, Zaworotko MJ. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): a detailed study of preparation and stability parameters. Int J Pharm. 2003;253(1-2):23-38.

  37. Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm. 2003;257(1-2):153-60.

  38. Hu FQ, Yuan H, Zhang HH, Fang M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm. 2002;239(1-2):121-8.

  39. Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, Allemann E, Doelker E. Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur J Pharm Sci. 2005;26(2):211-8.

  40. Schubert MA, Muller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles-evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125-31.

  41. Campardelli R, Cherain M, Perfetti C, Iorio C, Scognamiglio M, Reverchon E, Della Porta G. Lipid nanoparticles production by supercritical fluid assisted emulsion-diffusion. J Supercrit Fluids. 2013;82:34-40.

  42. Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C Mater Biol Appl. 2016;68:982-99.

  43. Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398:190-203.

  44. Pawar H, Surapaneni SK, Tikoo K, Singh C, Burman R, Gill MS, Sur S. Folic acid functionalized long-circulating coencapsulated docetaxel and curcumin solid lipid nanoparticles: in vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv. 2016;23(4):1453-68.

  45. Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomed. 2018;13:1569-83.

  46. Ekambaram P, Sathali Aah, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun. 2012;2(1):80-102.

  47. BagulUS,PisalVV,SolankiNV,Kamava1A.Currents1a1usofsolidhpidnanoparticles:areview.ModAppl BioequivAvailab [Internet]. 2018 [cited 2018 Nov 1];3(4):555617 [10 p.].Available from: https://www. researchgate.net/publication/324562176_Current_status_of_Solid_Lipid_Nanoparticles_A_review.

  48. Pragati S, Kuldeep S, Ashok S, Satheesh M. Solid lipid nanoparticles: a promising drug delivery technology. IJPSN. 2009;2(2):509-16.

  49. Surender V, Deepika M. Solid lipid nanoparticles: a comprehensive review. J Chem Pharm Res. 2016;8(8):102-14.

  50. Pardeshi C, Rajputi P, Belgamwar V, Tekade A, Patil G, Chaudhary K, Sonje A. Solid lipid based nanocarriers: an overview Acta Pharm. 2012;62:433-72.

  51. Yan ZJ, Li WY, Sun LL, Deng X, Wan K, Zhang JQ. Pharmacokinetics study of curcumin solid lipid nanoparticles by intravenous injection in rats. Zhong Yao Cai = J Chinese Med Mater. 2014;37(7):1234-6.

  52. Zheng J, Wan Y, Elhissi A, Zhang Z, Sun X. Targeted paclitaxel delivery to tumors using cleavable PEG-conjugated solid lipid nanoparticles. Pharm Res. 2014;31(8):2220-33.

  53. Baek JS, Kim JH, Park JS, Cho CW. Modification of paclitaxel-loaded solid lipid nanoparticles with 2-hydroxypropyl-P-cyclodextrin enhances absorption and reduces nephrotoxicity associated with intravenous injection. Int J Nanomed. 2015;10:5397-405.

  54. Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015;5(4): 182-91.

  55. Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerf. 2015;139:52-61.

  56. Thakkar A, Chenreddy S, Wang J, Prabhu S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid lipid nanoparticles. Cell Biosci. 2015;5:46.

  57. Madureira AR, Campos D, Gullon B, Marques C, Rodriguez-Alcala LM, Calhau C, Alonso JL, Sarmento B, Gomes AM, Pintado M. Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food Funct. 2016;7(1):516-29. doi: 10.1039/c5fo01004g.

  58. Chaudhari MB, Desai PP, Patel PA, Patravale VB. Solid lipid nanoparticles of amphotericin B (ambionp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res. 2016;6(4):354-64.

  59. Charoenputtakun P, Pamornpathomkul B, Opanasopit P, Rojanarata T, Ngawhirunpat T. Terpene composited lipid nanoparticles for enhanced dermal delivery of ALL-trans-retinoic acids. Biol Pharm Bull. 2014;37(7):1139-48.

  60. Ezzati NDJ, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5(2):151-59.

  61. Han SB, Know SS, Jeong YM, Yu ER, Park SN. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int J Cosmet Sci. 2014;36(6):588-97.

  62. Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ, Rizvi MA, Kamal MA, Ahmad FJ. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015;8:55-66.

  63. Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJ, Almeida AJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target. 2002;10(8):607-13.

  64. Videira M, Almeida AJ, Fabra A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 2012;8(7):1208-15.

  65. Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4802-8.

  66. Reddy LH, Adhikari JS, Dwarakanath BS, Sharma RK, Murthy RR. Tumoricidal effects of etoposide incorporated into solid lipid nanoparticles after intraperitoneal administration in Dalton's lymphoma bearing mice. AAPS J. 2006;8(2):E254-62.

  67. Athawale RB, Jain DS, Singh KK, Gude RP. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed Pharmacother. 2014;68(2):231-40.

  68. Cho HJ, Park JW, Yoon IS, Kim DD. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomed. 2014;9:495-504.

  69. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, Xi Y, Li Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226-32.

  70. Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine. 2013;9(1):111-21.

  71. Yuan Q, Han J, Cong W, Ge Y, Ma D, Dai Z, Li Y, Bi X. Docetaxel-loaded solid lipid nanoparticles suppress breast cancer cells growth with reduced myelosuppression toxicity. Int J Nanomed. 2014;9:4829-46.

  72. Li S, Wang L, Li N, Liu Y, Su H. Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother. 2017;95:548-55. doi: 10.1016/j.biopha.2017.08.090.

  73. Sandercock J, Parmar MK, Torri V, Qian W. First-line treatment for advanced ovarian cancer: paclitaxel, platinum and the evidence. Br J Cancer. 2002;87(8):815.

  74. Chirio D, Gallarate M, Peira E, Battaglia L, Muntoni E, Riganti C, Biasibetti E, Capucchio MT, Valazza A, Panciani P, Lanotte M, Annovazzi L, Caldera V, Mellai M, Filice G, Corona S, Schiffer D. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment. Eur J Pharm Biopharm. 2014;88(3):746-58.

  75. Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, Zhang Z, Sun X. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228-37.

  76. Zhou M, Li X, Li Y, Yao Q, Li Z, Lu L, Shi S. Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Deliv. 2017;24(1):1230-42.

  77. Chandratre SS, Dash AK. Multifunctional nanoparticles for prostate cancer therapy. AAPS Pharm. Sci Tech. 2015;16(1):98-107.

  78. Miao J, Du YZ, Yuan H, Zhang XG, Hu FQ. Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids Surf B Biointerf. 2013;110:74-80.

  79. Baek JS and Cho CW. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells Oncotarget. 2017;8(18):30369-82.

  80. Graziani SR, Vital CG, Morikawa AT, Van Eyll BM, Fernandes Junior HJ, Kalil Filho R, Maranhao RC. Phase II study of paclitaxel associated with lipid core nanoparticles (LDE) as third-line treatment of patients with epithelial ovarian carcinoma. Med Oncol. 2017;34(9):151.

  81. Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int J Nanomed. 2017;12:955-68.

  82. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70.

  83. Taveira SF, Araujo LM, de Santana DC, Nomizo A, de Freitas LA, Lopez RF. Development of cationic solid lipid nanoparticles with factorial design-based studies for topical administration of doxo-rubicin. J Biomed Nanotechnol. 2012;8(2):219-28.

  84. Siddiqui A, Gupta V, Liu YY, Nazzal S. Doxorubicin and MBO-asgcs oligonucleotide loaded lipid nanoparticles overcome multidrug resistance in adriamycin resistant ovarian cancer cells (NCI/ADR-RES). Int J Pharm. 2012;431(1-2):222-9.

  85. Ma P, Dong X, Swadley CL, Gupta A, Leggas M, Ledebur HC, Mumper RJ. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol. 2009;5(2):151-61.

  86. Kang KW, Chun MK, Kim O, Subedi RK, Ahn SG, Yoon JH, Choi HK. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine. 2010;6(2): 210-3.

  87. Hu L, Jia Y, WenDing. Preparation and characterization of solid lipid nanoparticles loaded with epirubicin for pulmonary delivery. Pharmazie. 2010;65(8):585-7.

  88. Patel MN, Lakkadwala S, Majrad MS, Injeti ER, Gollmer SM, Shah ZA, Boddu SH, Nesamony J. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique. AAPS PharmSciTech. 2014;15(6):1498-508.

  89. Mao S, Wang P, Bi D. Investigations on 5-fluorouracil solid lipid nanoparticles (SLN) prepared by hot homogenization. Pharmazie. 2005;60(4):273-7.

  90. Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J Agric Food Chem. 2017;65(36):7966-81.

  91. Battaglia L, Serpe L, Muntoni E, Zara G, Trotta M, Gallarate M. Methotrexate-loaded SLNs prepared by coacervation technique: in vitro cytotoxicity and in vivo pharmacokinetics and biodistribution. Nanomedicine (Lond). 2011;6(9):1561-73.

  92. Ruckmani K, Sivakumar M, Ganeshkumar PA. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J Nanosci Nanotechnol. 2006;6(9-10):2991-5.

  93. Apps MG, Choi EH, Wheate NJ. The state-of-play and future of platinum drugs. Endocr Relat Cancer. 2015;22(4):R219-33.

  94. Doijad RC, Manvi FV, Godhwani DM, Joseph R, Deshmukh NV. Formulation and targeting efficiency of Cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci. 2008;70(2):203-7.

  95. Tian J, Pang X, Yu K, Liu L, Zhou J. Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with cisplatin. Pharmazie. 2008;63(8):593-7.

  96. Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotech- nol. 2017;29:1-12.

  97. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4): 253-65.

  98. You J, Wan F, de Cui F, Sun Y, Du YZ, Hu FQ. Preparation and characteristic of vinorelbine bitar-trate-loaded solid lipid nanoparticles. Int J Pharm. 2007;343(1-2):270-6.

  99. Wan F, You J, Sun Y, Zhang XG, Cui FD, Du YZ, Yuan H, Hu FQ. Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): preparation and evaluation in vitro. Int J Pharm. 2008;359(1-2):104-10.

  100. Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, Ezzati Nahzad Dolatabadi J, Omidi Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244-53.

  101. Razi Soofiyani S, Baradaran B, Lotfipour F, Kazemi T, Mohammadnejad L. Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv Pharm Bull. 2013;3(2):249-55.

  102. Wang Y, Rajala A, Rajala RV. Lipid nanoparticles for ocular gene delivery. J Funct Biomater. 2015;6(2):379-94.

  103. De Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: properties and molecular mechanisms. J Control Release. 2015;201:1-13.

  104. Radaic A, de Paula E, de Jesus MB. Factorial design and development of solid lipid nanoparticles (SLN) for gene delivery. J Nanosci Nanotechnol. 2015;15(2):1793-800.

  105. Fabregas A, Sanchez-Hernandez N, Tico JR, Garcia-Montoya E, Perez-Lozano P, Sune-Negre JM, Hernandez-Munain C, Sune C, Minarro M. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: development, characterization and DNA binding efficiency of TCERG1 expression plasmid. Int J Pharm. 2014;473(1-2):270-9.

  106. Apaolaza PS, Delgado D, del Pozo-Rodriguez A, Gascon AR, Solinis MA. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm. 2014;465(1-2):413-26.

  107. Delgado D, del Pozo-Rodriguez A, Angeles Solinis M, Bartkowiak A, Rodriguez-Gascon A. New gene delivery system based on oligochitosan and solid lipid nanoparticles: "in vitro" and "in vivo" evaluation. Eur J Pharm Sci. 2013;50(3-4):484-91.

  108. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806.

  109. Xue HY, Guo P, Wen WC, Wong HL. Lipid-Based Nanocarriers for RNA Delivery. Curr Pharm Des. 2015;21(22):3140-7.

  110. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12(5):461.

  111. Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials. 2013;34(27):6429-43.

  112. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457(7228):426.

  113. Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release. 2015;201:78-89.

  114. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633.

  115. Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, Joo KM, Seo SW, Park TG, Nam DH. In vivo specific delivery of c-Met sirna to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 2011;22(12):2568-72.

  116. Montana G, Bondi ML, Carrotta R, Picone P, Craparo EF, San Biagio PL, Giammona G, Di Carlo M. Employment of cationic solid-lipid nanoparticles as RNA carriers. Bioconjug Chem. 2007;18(2): 302-8.

  117. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protocols Pharmacol. 2013 Jun; Chapter 14:Unit 14.25.

  118. Jingwen Liu, Tingting Meng, Ming Yuan, Lijuan Wen, Bolin Cheng, Na Liu, Xuan Huang, Yun Hong, Hong Yuan, and Fuqiang Hu. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomed. 2016;11:6713-25.

  119. Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB, Kim CW, Oh YK. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and sirna. Eur J Pharm Biopharm. 2012;80(2):268-73.

  120. Kotmakci M, Qetintas VB, Kantarci AG. Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells. Int J Pharm. 2017;525(1):101-11.

  121. Choi SH, Jin SE, Lee MK, Lim SJ, Park JS, Kim BG, Ahn WS, Kim CK. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm. 2008;68(3): 545-54.

  122. Zhang B, Zhang Y, Yu D. Lung cancer gene therapy: transferrin and hyaluronic acid dual ligand-decorated novel lipid carriers for targeted gene delivery. Oncol Rep. 2017;37(2):937-944.

  123. Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci. 2014;111(31):11449-54.

  124. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406-17.

  125. Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O, Lange C, Giese K, Kaufmann J, Khan M, Drevs J. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol. 2014;32(36):4141-8.

  126. Northfelt DW, Hamburg SI, Borad MJ, Seetharam M, Curtis KK, Lee P, Crowell B, Vocila L, Fredlund P, Gilbert MJ, Mast CP. A phase I dose-escalation study of TKM-080301, a RNAi therapeutic directed against polo-like kinase 1 (PLK1), in patients with advanced solid tumors: expansion cohort evaluation of biopsy samples for evidence of pharmacodynamic effects of PLK1 inhibition. J Clin Oncol. 2013;31(15). doi: 10.1200/jco.2013.31.15_suppl.tps2621.

  127. Strumberg D, Schultheis B, Traugott U, Vank C, Santel A, Keil O, Giese K, Kaufmann J, Drevs J. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J Clin Pharmacol Ther. 2012;50(1):76.

  128. Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007;9:767-76.

  129. Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomed. 2012;7:1841-50.

  130. Neves AR, Lucio M, Martins S, Lima JL, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomed. 2013;8:177-87.

  131. Teskac K, Kristi J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm. 2010;390(1):61-9.

  132. Zhang QH, Xiong QP, Shi YY, Zhang DY. Study on preparation and characterization of resveratrol solid lipid nanoparticles and its anticancer effects in vitro. Zhong Yao Cai = J Chinese Med Mater. 2010;33(12):1929-32.

  133. Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32(2):389-402.

  134. Wang J, Wang H, Zhu R, Liu Q, Wang S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1P transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomate- rials. 2015;53:475-83.

  135. Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, Moustaid-Moussa N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25(4):363-76.

  136. Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014;394264.

  137. Wang J, Zhu R, Sun D, Sun X, Geng Z, Liu H, Wang SL. intracellular uptake of curcumin-loaded solid lipid nanoparticles exhibit anti-inflammatory activities superior to those of curcumin through the NF-Kb signaling pathway. J Biomed Nanotechnol. 2015;11(3):403-15.

  138. Zhu R, Wu X, Xiao Y, Gao B, Xie Q, Liu H, Wang S. Synergic effect of SLN-curcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line. Cancer Biother Radiopharm. 2013;28(8):579-87.

  139. Rompicharia SVK, Bhatt H, Shah A, Komanduri N, Vijaiasarathy D, Ghosh B, Biswas S. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem Phys Lipids. 2017;208:10-18.

  140. Hazzah HA, Farid RM, Nasra MM, Zakaria M, Gawish Y, El-Massik MA, Abdallah OY. A new approach for treatment of precancerous lesions with curcumin solid-lipid nanoparticle-loaded gels: in vitro and clinical evaluation. Drug Deliv. 2016;23(4):1409-19. doi: 10.3109/10717544.

  141. Yan ZJ, Li WY, Sun LL, Deng X, Wan K, Zhang JQ. Pharmacokinetics study of curcumin solid lipid nanoparticles by intravenous injection in rats. Zhong Yao Cai = J Chinese Med Mater. 2014;37(7):1234-6.

  142. Ji H, Tang J, Li M, Ren J, Zheng N, Wu L. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 2016;23(2):459-70. doi: 10.3109/10717544.

  143. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng, Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerf. 2013;111:367-75.

  144. Vandita K, Shashi B, Santosh KG, Pal KI. Enhanced apoptotic effect of curcumin loaded solid lipid nanoparticles. Mol Pharm. 2012;9(12):3411-21.

  145. Wang H, Tao L, Qi K, Zhang H, Feng D, Wei W, Kong H, Chen T, Lin, Q. Quercetin reverses tamoxifen resistance in breast cancer cells. J BUON. 2015;20(3):707-13.

  146. Varshosaz J, Jafarian A, Salehi G, Zolfaghari B. Comparing different sterol containing solid lipid nanoparticles for target delivery of quercetin in hepatocellular carcinoma. J Liposome Res. 2014;24(3):191-203.

  147. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238-44.

  148. Caneiro G, Silva EL, Pacheco LA, de Souza-Fagundes EM, Correa NC, de Goes AM, de Olivera MC, Ferreira LA. Formation of ion pairing as an alternative to improve encapsulation and anticancer activity of all-trans retinoic acid loaded solid lipid nanoparticles. Int J Nanomed. 2012;7:6011-20.

  149. Akanda MH, Rai R, Slipper IJ, Chowdhry BZ, Lamprou D, Getti G, Douroumis D. Delivery of retinoic acid to lncap human prostate cancer cells using solid lipid nanoparticles. Int J Pharm. 2015;493(1-2):161-71.

  150. Castro GA, Oliveira CA, Mahecha GA, Ferreira LA. Comedolytic effect and reduced skin irritation of a new formulation of all-trans retinoic acid-loaded solid lipid nanoparticles for topical treatment of acne. Arch Dermatol Res. 2011;303(7):513-20.

  151. Charoenputtakhun P, Opanasopit P, Rojanarata T, Ngawhirunpat T. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier. Pharm Dev Technol. 2014;19(2):164-72.

  152. Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345(1-2):163-71.

  153. Carbone C, Campisi A, Musumeci T, Raciti G, Bonfanti R, Puglisi G. FA-loaded lipid drug delivery systems: Preparation, characterization and biological studies. Eur J Pharm Sci. 2014;52:12-20.

  154. Picone P, Bondi ML, Montana G, Bruno A, Pitarresi G, Giammona G, Di Carlo M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic Res. 2009;43(11):1133-45.

  155. Cassano R, Mellace S, Marrelli M, Conforti F, Trombino S. a-Tocopheryl linolenate solid lipid nano-particles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: in vitro anti-melanoma activity evaluation. Colloids Surfaces B: Biointerf. 2017;51:128-33.

  156. Cordova CAS, Locatelli C, Winter E, Silva AH, Zanetti-Ramos BG, Jasper R, Mascarello A, Yunes RA, Nunes RJ, Creczynski-Pasa TB. Solid lipid nanoparticles improve octyl gallate antimetastatic activity and ameliorate its renal and hepatic toxic effects. Anticancer Drugs. 2017;28(9): 977-88.

  157. Biasibetti E, Battaglia L, Veglio, Ferrara B, Muntoni E, Cangemi L, Evangelista R, Capucchio MT, Dianzani C. Solid lipid nanoparticles as new system for the delivery of temozolomide in a mouse model of melanoma. J Comp Pathol. 2018;158:110.

  158. Clemente N, Ferrara B, Gigliotti CL, Boggio E, Capucchio MT, Biasibetti E, Schiffer D, Mellai M, Annovazzi L, Cangemi L, Muntoni E, Miglio G, Dianzani U, Battaglia L, Dianzani C. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. preliminary in vitro and in vivo studies. Int J Mol Sci. 2018;19(2):255.

  159. Shen H, Shi S, Zhang Z, Gong T, Sun X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015; 5(7):755-71.

  160. Dwivedi A, Mazumder A, du Plessis L, du Preez RK, du Plessis J. In vitro anticancer effects of artemisone nan-vesicular formulations on melanoma cells. Nanomedicine. 2015;11(8):2041-50.

  161. Kadar A, Pooja D, Gora RH, Gudem S, Kolapalli VRM, Kulhari H, Sistla R. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur J Pharm Biopharm. 2018;132:168-79.

  162. Ma L, Yang D, Li Z, Zhang X, Pu L. Co-delivery of paclitaxel and tanespimycin in lipid nanoparticles enhanced antigastric-tumor effect in vitro and in vivo. Artif Cells Nanomed Biotechnol. 2018;14:1-8.

  163. Rosiere R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathvet T, Vermeersch M, Van Antwerpen P, Amighi K, Wauthoz N. New Folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018;15(3):899-910.

  164. Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):342.

  165. Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm. 2017;518(1):228-41.

  166. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378): 480-9.

  167. Corrigan-Curay J, Kiem HP, Baltimore D, O'Reilly M, Brentjens RJ, Cooper L, Forman S, Gottschalk S, Greenberg P, Junghans R, Heslop H, Jensen M, Mackall C, June C, Press O, Powell D, Ribas A, Rosenberg S, Sadelain M, Till B, Patterson AP, Jambou RC, Rosenthal E, Gargiulo L, Montgomery M, Kohn DB. T-cell immunotherapy: looking forward. Molec Ther. 2014;22:1564-74.

  168. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Limon PL, Ferrandino AF. Combination delivery of TGF-P inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nature Mat. 2012;11(10):895-905.

  169. Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, Pan H, Cai L, Ma Y. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine. 2012;6;30(32):4790-9.

  170. Miyabe H, Hyodo M, Nakamura T, Sato Y, Hayakawa Y, Harashima H. A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy. J Control Release. 2014;184:20-7.

  171. Mandal M, Lee KD. Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. Biochimica Biophysica Acta (BBA)-Biomembranes. 2002;1563(1):7-17.

  172. Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-P siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. Acs Nano. 2014;8(4):3636-45.

  173. Binder DC, Schreiber H. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors [letter]. Cancer Res. 2014;74(2):632; discussion 635.

  174. Nenu I, Tudor D, Filip AG, Baldea I. Current position of TNF-a in melanomagenesis. Tumor Biol. 2015;36(9):6589-602.

  175. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nature Rev Clin Oncol. 2010;7(11):653-64.

  176. Wei L, Yang Y, Shi K, Wu J, Zhao W, Mo J. Preparation and characterization of loperamide-loaded Dynasan 114 solid lipid nanoparticles for increased oral absorption in the treatment of diarrhea. Front Pharmacol. 2016;7:332.

  177. Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR, Howel CA. Nano carriers for drug transport across the blood-brain barrier. J Drug Target. 2017;25(1):17-28.

  178. Ajorlou E, Khosroushahi AY. Trends on polymer-and lipid-based nanostructures for parenteral drug delivery to tumors. Cancer Chemother Pharmacol. 2016;0ct 15:1-5.

  179. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. doi: 10.1016/j.addr.2012.09.037.

  180. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48-58.

  181. Wishart GC, Bissett D, Paul J, Jodrell D, Harnett A, Habeshaw T, Kerr DJ, Macham MA, Soukop M, Leonard RC. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J Clin Oncol. 1994;12: 1771-7.

  182. Malmo J, Sandvig A, Varum KM, Strand SP. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach. PLoS One. 2013 Jan 23;8(1):e54182.

  183. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, Mumper RJ. Doxorubicin and pacli-taxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 2009 May 1;69(9):3918-26.

  184. Chen HH, Huang WC, Chiang WH, Liu TI, Shen MY, Hsu YH, Lin SC, Chiu HC. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. Int J Nanomed. 2015;10:5035.

  185. Bing Lu, Xiaojia Huang, Jingxin Mo, Wei Zhao Drug delivery using nanoparticles for cancer stemlike cell targeting. Front Pharmacol. 2016;7:84.

  186. Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28.

  187. Hong IS, Jang GB, Lee HY, Nam JS. Targeting cancer stem cells by using the nanoparticles. Int J Nanomed. 2015;10:251-260.

  188. Cruz AF, Fonseca NA, Moura V, Simoes S, Moreira JN. Targeting cancer stemcells and non-stem cancer cells: the potential of lipid-based nanoparticles. Curr Pharm Des. 2017;23(43):6563-72. doi: 10.2174/1381612823666171115105252.

  189. Tang J, Ji H, Ren J, Li M, Zheng N, Wu L. Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multidrug resistance in vitro. Oncol Lett. 2017;13(1):389-395.

によって引用された
  1. Tagde Priti, Tagde Pooja, Islam Fahadul, Tagde Sandeep, Shah Muddaser, Hussain Zareen Delawar, Rahman Md. Habibur, Najda Agnieszka, Alanazi Ibtesam S., Germoush Mousa O., Mohamed Hanan R. H., Algandaby Mardi M., Nasrullah Mohammed Z., Kot Natalia, Abdel-Daim Mohamed M., The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders, Molecules, 26, 23, 2021. Crossref

  2. Ibrahim Usri H., Devnarain Nikita, Omolo Calvin A., Mocktar Chunderika, Govender Thirumala, Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin, International Journal of Pharmaceutics, 607, 2021. Crossref

  3. Bidan Nadège, Lores Saínza, Vanhecke Aure, Nicolas Valérie, Domenichini Séverine, López Rafael, de la Fuente María, Mura Simona, Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model, International Journal of Pharmaceutics, 617, 2022. Crossref

  4. Vieira Italo Rennan Sousa, Conte-Junior Carlos Adam, Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications, Critical Reviews in Food Science and Nutrition, 2022. Crossref

  5. Thakur Reena , Suri Chander Raman , Kaur Indu Pal, Rishi Praveen, Peptides as Diagnostic, Therapeutic, and Theranostic Tools: Progress and Future Challenges , Critical Reviews™ in Therapeutic Drug Carrier Systems, 40, 1, 2023. Crossref

  6. Xu Yilin, Wang Min, Ning Shuangcheng, Yang Zhonglan, Zhou Lili, Xia Xinhua, Development of Glycyrrhetinic Acid and Folate Modified Cantharidin Loaded Solid Lipid Nanoparticles for Targeting Hepatocellular Carcinoma, Molecules, 27, 20, 2022. Crossref

2225 記事の閲覧数 49 記事のダウンロード 記事の統計
2225 記事の閲覧数 49 記事のダウンロード 6 Crossref 引用数 Google
Scholar
引用数

類似内容の記事:

Current Perspectives on Novel Drug Carrier Systems and Therapies for Management of Pancreatic Cancer: An Updated Inclusive Review Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 3
Rohit Bhosale, Bannimath Gurupadayya, Devegowda Vishakante Gowda, Koganti Venkata Sairam, Riyaz Ali Mahafez Ali Osmani, Rudra Vaghela, Hosahalli Veerabhadrappa Gangadharappa, Parthasarathi Keshavarao Kulkarni
Optimizing Drug Delivery for Enhancing Therapeutic Efficacy of Recombinant Human Endostatin in Cancer Treatment Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 5
Huanchen Sha, Fuguo Xu, Qingyong Ma
A REVIEW ON RECENT ADVANCEMENTS IN THE HEMODYNAMICS OF NANO-DRUG DELIVERY SYSTEMS Nanoscience and Technology: An International Journal, Vol.11, 2020, issue 1
B. Vasu, O. Anwar Bég, R.S.R. Gorla, P. V. S. N. Murthy, Ponnaiah Saikrishnan, Jayati Tripathi, Vallampati Ramachandra Prasad, Ankita Dubey
Critical Aspects in Rationale Design of Fluorouracil-Based Adjuvant Therapies for the Management of Colon Cancer Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 2
Vivek Ranjan Sinha, Honey
Polymeric Immunonanoparticles Mediated Cancer Therapy: Versatile Nanocarriers for Cell-Specific Cargo Delivery Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 1
Niyati S. Acharya, Namdev L. Dhas, Ritu R. Kudarha, Sanjeev R. Acharya
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain