ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Therapeutic Drug Carrier Systems
インパクトファクター: 2.9 5年インパクトファクター: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 印刷: 0743-4863
ISSN オンライン: 2162-660X

巻:
巻 36, 2019 巻 35, 2018 巻 34, 2017 巻 33, 2016 巻 32, 2015 巻 31, 2014 巻 30, 2013 巻 29, 2012 巻 28, 2011 巻 27, 2010 巻 26, 2009 巻 25, 2008 巻 24, 2007 巻 23, 2006 巻 22, 2005 巻 21, 2004 巻 20, 2003 巻 19, 2002 巻 18, 2001 巻 17, 2000 巻 16, 1999 巻 15, 1998 巻 14, 1997 巻 13, 1996 巻 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2013007362
pages 411-434

In Situ Gel-Forming System: An Attractive Alternative for Nasal Drug Delivery

Xiaoqing Wang
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China
Guiyang Liu
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China
Jianli Ma
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China
Shaolai Guo
Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
Lei Gao
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China
Yanhua Jia
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China
Xiang Li
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China
Qingzhe Zhang
Department of Pharmacy, The First Affiliated Chinese PLA General Hospital, Beijing, China

要約

Intranasal delivery is one of the most interesting and challenging endeavors facing pharmaceutical scientists. The conventional nasal drug delivery systems including solutions, suspensions, and ointments show drawbacks such as short residence in the nasal cavity, highly variable efficiency, low permeability, and inconvenient administration. In situ gel-forming systems are an interesting polymeric system that exists as flowing aqueous solution before administration and undergoes phase transition to form a viscoelastic gel in a physiologic environment. Benefiting from the merits of both a solution and a gel, an impressive number of in situ gel-forming systems induced by temperature, pH, and ions have been prepared for use in nasal drug delivery in the past few years. In situ gel-forming systems increase the retention of drugs in the nasal cavity, and some of them also show permeation-enhancing capabilities. This article reviews the in situ gel-forming systems used for nasal drug delivery and introduces their gelling mechanisms and other favorable features for intranasal delivery. It also describes the release patterns and drug stability of in situ gels as well as their in vivo performances and local safety following nasal administration.


Articles with similar content:

Stimuli-Responsive Systems with Diverse Drug Delivery and Biomedical Applications: Recent Updates and Mechanistic Pathways
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 3
Ranjot Kaur, Sumant Saini, Bhupinder Singh, Rajneet Kaur Khurana, Babita Garg
Mucosal Drug Delivery: Membranes, Methodologies, and Applications
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 3
Bozena Michniak, Yifan Song, Rashmi Thakur, Victor M. Meidan, Yiping Wang
Structuring Polymers for Delivery of DNA-Based Therapeutics: Updated Insights
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 6
Suresh P. Vyas, Shailja Tiwari, Madhu Gupta
Biodegradable Microspheres for Parenteral Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.22, 2005, issue 6
Vivek Ranjan Sinha, A. Trehan
Colloidosomes: An Emerging Vesicular System in Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 4
Yashwant Gupta, Satish Shilpi, Anekant Jain, Sanjay Kumar Jain