ライブラリ登録: Guest
Critical Reviews™ in Immunology

年間 6 号発行

ISSN 印刷: 1040-8401

ISSN オンライン: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Immunotherapy for Triple-Negative Breast Cancer: Latest Research and Clinical Prospects

巻 39, 発行 3, 2019, pp. 211-221
DOI: 10.1615/CritRevImmunol.2019030924
Get accessGet access

要約

Patients with triple-negative breast cancer (TNBC) do not express estrogen receptor (ER), HER2/neu, or progesterone receptor (PR) and generally have a poor prognosis with elevated chances of recurrence. They constitute about 15% of breast cancer patients. TNBC, when diagnosed at stage II, has a recurrence of about 60%, while the risk of recurrence for a hormone receptor-positive cancer is about 10-20%. This particular breast cancer has no targeted treatment at the molecular level; unlike other subtypes of breast cancer, patients have only chemotherapy and radiation to rely on. They cannot benefit from endocrine therapy. Research based on cancer immunology and translational immunotherapy has been supported by early trial successes. However, major questions still exist concerning these therapeutic approaches in practice. Promising new therapies hold the potential to cure a wide range of tumor types, including those which cannot be treated with conventional therapies. A better insight into the immunogenicity of TNBC has resulted in clinical studies of various immunotherapeutic agents. This review focuses on current immunotherapies for TNBC, including immune checkpoint inhibitors, dendritic cell therapy, adoptive cell therapy, and oncolytic viral therapy.

参考
  1. Siegel R, Miller KD, Ahmedin J. Cancer statistics. CA Cancer J Clin. 2017;67(1):7-30. .

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015 Mar;65(2):87-108. .

  3. Bray F, Ferlay J, Soerjomataram I. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. .

  4. Smith AJ, Oertle J, Prato D. Immunotherapy in cancer treatment. Open J Med Microbiol. 2014;4(4):178-91. .

  5. Schuller D, Oppenheimer P. Oral metaproterenol versus theophylline in the daily control of childhood asthma. Am Rev Respiratory Dis. 1981;123(2):59. .

  6. Meiliana A, Dewi NM, Wijaya A. Cancer immunotherapy: a review. Indonesian Biomed J. 201;8(1):1. .

  7. Shenble E, Jinga D, Peoples G. Breast cancer immuno-therapy. Maedica (Buchar). 2015 Jun;10(2):185-91. .

  8. Farkona S, Diamandis EP, Blasutig IM. Cancer immuno-therapy: the beginning of the end of cancer? BMC Med. 201;14(1):1-18. .

  9. Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci. 2015;112(47): 14467-72. .

  10. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Commun. 2016 Oct 21;7:13193. .

  11. Benedetti R, Dell'Aversana C, Giorgio C, Astorri R, Altucci L. Breast cancer vaccines: new insights. Front Endocrinol. 2017;8:1-7. .

  12. Joyce DP, Murphy D, Lowery AJ, Curran C, Barry K, Malone C, Kerin MJ. Prospective comparison of outcome after treatment for triple-negative and non-triple-negative breast cancer. Surgeon. 2017;15(5):272-7. .

  13. Gao JJ, Swain SM. Luminal A breast cancer and molecular assays: a review. Oncologist. 2018;23(5):556-65. .

  14. Dai1 X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015; Sep 15;5(10): 2929-43. .

  15. Lyons TG, Traina TA. Emerging novel therapeutics in triple-negative breast cancer. Adv Exper Med Biol. 2019;1152:377-99. .

  16. Lehmann BDB, Bauer JAJ, Chen X, Sanders ME, Chakravarthy B, Shyr Y, Pietenpol J. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-67. .

  17. Shimelis H, LaDuca H, Hu C, Hart SN, Na J, Thomas A, Akinhanmi M, Moore RM, Brauch H, Cox A, Eccles DM, Ewart-Toland A, Fasching PA, Fostira F, Garber J, Godwin AK, Konstantopoulou I, Nevanlinna H, Sharma P, Yannoukakos D, Yao S, Feng BJ, Tippin Davis B, Lilyquist J, Pesaran T, Goldgar DE, Polley EC, Dolinsky JS, Couch FJ. Triple-negative breast cancer risk genes identified by multigene hereditary cancer panel testing. J Natl Cancer Institute. 2018 August 1;110(8):855-62. .

  18. Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triple-negative breast cancer. Cancer Res. 2013;73(7):2025-30. .

  19. Denkert C, Liedtke C, Tutt A, Minckwitz G. Breast cancer 3 molecular alterations in triple-negative breast cancer. Lancet. 2016;6736(16):1-13 .

  20. Malla RR, Kumari S, Gavara MM, Badana AK, Gugalavath S. A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Biophys Rev. 2019;11(2):227-34. .

  21. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136(5):823-37. .

  22. Ahmad A. Breast cancer metastasis and drug resistance; challenges and progress. Cham, Switzerland: Springer; 2019. .

  23. Loibl S, O'Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD, Geyer CE. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497-509. .

  24. Swenerton K, Huntsman D, Oza A, Tischkowitz M, Macpherson E, Yerushalmi R, Hirte H. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12(9):852-61. .

  25. McCann KE, Hurvitz SA, McAndrew N. Advances in targeted therapies for triple-negative breast cancer. Drugs. 2019;79(11):1217-30. .

  26. Milani A, Sangiolo D, Montemurro F, Aglietta M, Valabrega G. Active immunotherapy in HER2 overexpressing cancer: current status and future perspectives. Annals Oncol. 2013;24(7):1740-8. .

  27. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer-preclinical background: CTLA-4 and PD-1 blockade. Sem Oncol. 2010;37(5):430-9. .

  28. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev Cancer. 2012 March 22;12(4):252-4. .

  29. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, Patnaik A, Dronca R, Zarour H, Joseph RW, Boasberg P, Chmielowski B, Mateus C, Postow MA, Gergich K, Elassaiss-Schaap J, Li XN, Iannone R, Ebbinghaus SW, Kang SP, Daud A. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014 Sep 20;6736(14):1109-17. .

  30. Pai-Scherf L, Blumenthal GM, Li H, Subramaniam S, Mishra-Kalyani PS, He K, Zhao H, Yu J, Paciga M, Goldberg KB, McKee AE, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. Oncologist. 2017;22(11):1392-9. .

  31. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016 July 20;34(21):240-7. .

  32. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, Hui R, Curigliano G, Toppmeyer D, O'Shaughnessy J, Loi S, Paluch-Shimon S, Tan AR, Card D, Zhao J, Karantza V, Cortes J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase 2 KEYNOTE-086 study. Ann Oncol. 2019 March 1;30(3):397-404 .

  33. P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018 Nov 29;379(22):2108-21. .

  34. Genetech. FDA grants Genentech's Tecentriq in combination with abraxane accelerated approval for people with PD-L1-positive, metastatic triple-negative breast cancer [Internet]. 2019. Available from: https://www. gene.com/media/press-releases/14782/2019-03-08/ fda-grants-genentechs-tecentriq-in-combi. .

  35. Monnot GC, Romero P. Rationale for immunological approaches to breast cancer therapy. Breast. 2018;37:187-95. .

  36. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways similarities, differences, and implications of their inhibition. Am J Clin Oncol: Cancer Clin Trials. 2016;39(1):98-106. .

  37. Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): where to go from here. Cancer. 2018 May 15;124(10):2086-103. .

  38. Marme F. Immunotherapy in breast cancer. Oncol Res Treat. 2016;39(6):335-45. .

  39. 39. Dhakal A. Immune checkpoint inhibitors in triple negative breast cancer. Novel Approaches Cancer Study. 2017;1(1):1-4. .

  40. Basile D, Pelizzari G, Vitale MG, Lisanti C, Cinausero M, Iacono D, Puglisi F. Atezolizumab for the treatment of breast cancer. Exp Opin Bio Ther. 2018;18(5):595-603. .

  41. Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, Kuter I, Nanda R, Cassier PA, Delord JP, Gordon MS, ElGabry E, Chang CW, Sarkar I, Grossman W, O'Hear C, Fasso M, Molinero L, Schmid P. Long-term clinical out-comes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 2019 Jan 1;5(1):74-82. .

  42. Adams S, Diamond JR, Hamilton E, Pohlmann PR, Tolaney SM, Chang CW, Powderly J. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol. 2019 Mar 1;5(3):334-42. .

  43. Bergen E, Galid A. An update on immunotherapy in breast cancer. Memo-Mag Eur Med Oncol. 2019;12(1):63-6. .

  44. Planes-laine G, Rochigneux P, Bertucci F, Chr A, Viens P, Sabatier R, Gonsalves A. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging-a literature review. Cancers (Basel). 2019 Jul 22;11(7):E1033 .

  45. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exper Med. 2013;210(9):1695-710. .

  46. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974-82. .

  47. Ribas BA, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol. 2003 Jun 15;21(12):2415-32. .

  48. O'Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood J. 2004 Oct 15;104(8):2235-46. .

  49. Escors D, Perez-janices N, Schwarze J, Dufait I, Goyvaerts C, Lanna A, Frederick Arce, Blanco-Luquin I, Kochan G, Guerrero-Setas D, Breckpot K. Dendritic cells or myeloid-derived suppressor cells? Assessing T-cell responses in anticancer immunotherapy. Oncoimmunology. 2013 Oct 1;2(10):e26148. .

  50. Kalinski P, Muthuswamy R, Urban J. Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev Vaccines. 2013;12(3):285-95. .

  51. Lai-Lai C, Kandalaft LE. Anti-tumour treatment in vivo cancer vaccination: which dendritic cells to target and how? Cancer Treat Rev. 2018;71:88-101. .

  52. Pinzon-Charry A, Schmidt C, Lopez JA. Dendritic cell immunotherapy for breast cancer. Expert Opin Bio Ther. 2006;6(6):591-604. .

  53. Zhang P, Yi S, Li X, Liu R, Jiang H, Huang Z, Liu Y, Wu J, Huang Y. Preparation of triple-negative breast cancer vaccine through electrofusion with day-3 dendritic cells. PLoS One. 2014;9(7):e102197. .

  54. Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger MR, Esposito I, Lohr M, Friess H, Kleeff J. Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 2007;97(8):1106-15. .

  55. Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB, Stein GS, Gerstenfeld LC. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human meta- static breast cancer cells. Cancer Res. 2003;63(10):2631-7. .

  56. Tang M, Liu Y, Zhang QC, Zhang P, Wu JK, Wang JN, Ruan Y, Huang Y Antitumor efficacy of the Runx2-dendritic cell vaccine in triple-negative breast cancer in vitro. Oncol Lett. 2018;16(3):2813-22. .

  57. Kokate R. A systematic overview of cancer immunotherapy: an emerging therapy. Pharm Pharmacol Int J. 2017;5(2):1-6. .

  58. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN. Classification of current anticancer immunotherapies. Oncotarget. 2014;5(24):12472-508. .

  59. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373-9. .

  60. Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol. 2018;9:866. .

  61. Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195. .

  62. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Human Vaccines Immunother. 2018;14(4):839-46. .

  63. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018;6(1):140. .

  64. Zeh HJ, Downs-Canner S, McCart JA, Guo ZS, Rao UN, Ramalingam L, Thorne SH, Jones HL, Kalinski P, Wieckowski E, O'Malley ME, Daneshmand M, Hu K, Bell JC, Hwang TH, Moon A, Breitbach CJ, Kirn DH, Bartlett DL. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther. 2015;23(1):202-14. .

  65. Gholami S, Chen CH, Gao S, Lou E, Fujisawa S, Carson J, Nnoli JE, Chou TC, Bromberg J, Fong Y. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther. 2014;21(7):283-9. .

  66. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299-308. .

  67. Ikeda H. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. Int Immunol. 2016;28(7):349-53. .

  68. Houot R, Schultz LM, Marabelle A, Kohrt H. T-cell-based immunotherapy: adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res. 2015;3(10):1115-22. .

  69. Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6(11):e1363139. .

  70. Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, Restifo NP. Increased intensity lymphodepletion and adoptive immunotherapy-how far can we go? Nature Clin Practice Oncol. 2006;3(12): 668-681. .

  71. Yong CSM, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH. CAR T-cell therapy of solid tumors. Immunol Cell Biol. 2017;95(4):356-63. .

  72. Wang J, Zhou P. New approaches in CAR-T cell im-munotherapy for breast cancer. Adv Exper Med Biol. 2017;1026:371-81. .

  73. Tchou J, Wang LC, Selven B, Zhang H, Conejo-Garcia J, Borghaei H, Kalos M, Vondeheide RH, Albelda SM, June CH, Zhang PJ. Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast Cancer Res Treat. 2012;133(2):799-804. .

近刊の記事

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain