ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN 印刷: 0040-2508
ISSN オンライン: 1943-6009

巻:
巻 79, 2020 巻 78, 2019 巻 77, 2018 巻 76, 2017 巻 75, 2016 巻 74, 2015 巻 73, 2014 巻 72, 2013 巻 71, 2012 巻 70, 2011 巻 69, 2010 巻 68, 2009 巻 67, 2008 巻 66, 2007 巻 65, 2006 巻 64, 2005 巻 63, 2005 巻 62, 2004 巻 61, 2004 巻 60, 2003 巻 59, 2003 巻 58, 2002 巻 57, 2002 巻 56, 2001 巻 55, 2001 巻 54, 2000 巻 53, 1999 巻 52, 1998 巻 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v79.i1.30
pages 29-38

COMPENSATION OF FIBER NONLINEARITY IN 40×32 GBAUD LONG-HAUL DWDM TRANSMISSION

Narimane Hadjadji
Telecommunications Laboratory (LT), Faculty of Science and Technology, Université 8 Mai 1945 Guelma, BP-401, Guelma 24000, Algeria
R. Hamdi
Telecommunications Laboratory (LT), Université 8 Mai 1945 Guelma, BP-401, Guelma 24000, Algeria

要約

This paper investigates the performance of 5.12 Tbps Dense Wavelength-Division Multiplexing (DWDM) transmission using 40 channels with 128-Gbps Polarization Division Multiplexing-0.3 return to zero-quadrature phase-shift keying Quadrature Phase Shift Keying (PDM-0.3RZ-QPSK) modulation format. The prime advantage of the proposed work is improving the transmission performance by increasing the signal quality and the maximum reach. This is achieved by using the digital backpropagation algorithm as a nonlinearity compensation technique. The considerable nonlinear effects are the self-phase modulation (SPM), the cross-phase modulation (XPM). The maximum achievable transmission distances obtained at a bit error rate of 3.8×10-3 are 4800 km and 2400 km for the single and DWDM transmission, respectively.

参考

  1. Alvarado, A., Fehenberger, T., Chen, B., and Willems, F.M.J., (2018) Achievable information rates for fiber optics: Applications and computations, J. Lightwave Technol., 36(2), pp. 424-439.

  2. Gurkin, N.V., Mikhailov, V., Nanii, O.E., Novikov, A.G. et al., (2014) Experimental investigation of nonlinear noise in long-haul 100-Gb/s DP-QPSK communication systems using real-time DSP, Laser Physics Letters, 11(9), pp. 095103.

  3. Winzer, P.J., Neilson, D.T., and Chraplyvy, A.R., (2018) Fiber-optic transmission and networking: the previous 20 and the next 20 years, Opt. Express., 26(18), pp. 24190-24239.

  4. Xu, T., Karanov, B., Shevchenko, N.A., Lavery, D. et al., (2018) Spectral Broadening Effects in Optical Communication Networks: Impact and Security Issue, Proc. of 10th Intl. Advanced Infocomm Technol (ICAIT), Conf., 10.

  5. Agrawal, P., (2010) Fiber-Optic Communication Systems, New York, John Wiley & Sons.

  6. Amari, A., Dobre, O.A., Venkatesan, R., Kumar, O.S., Ciblat, P., and Jaouen, Y., (2017) A survey on fiber nonlinearity compensation for 400 Gb/s and beyond optical communication systems, IEEE Communications Surveys & Tutorials., 19(4), pp. 3097-3113.

  7. Xu, T., Shevchenko, N.A., Karanov, B., Lavery, D. et al., (2017) Nonlinearity Compensation and Information Rates in Fully-Loaded C-band Optical Fibre Transmission Systems, Proc. of 43rd Intl. Euro Optical Communication (ECOC), Conf., 43, pp. 1-3.

  8. Gaiarin, S., Perego, A.M., da Silva, E.P., Da Ros, F., and Zibar, D., (2018) Dual-polarization nonlinear Fourier transform-based optical communication system, Optica, 5(3), pp.263-270.

  9. Secondini, M., Rommel, S., Fresi, F., Forestieri, E. et al., (2015) Coherent 100G nonlinear compensation with single-step digital backpropagation, Proc. of Intl. Optical Network Design and Modeling (ONDM), Conf., 19, pp. 63-67.

  10. Hu, H., Jopson, R.M., Gnauck, A.H., Randel, S., and Chandrasekhar, S., (2017) Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations, Opt. Express., 25(3), pp. 1618-1628.

  11. Makovejs, S., Torrengo, E., Millar, D.S., Killey, R.I. et al., (2011) Comparison of pulse shapes in a 224 Gbit/s (28 Gbaud) PDM-QAM16 long-haul transmission experiment, Proc. of Optical Fiber Communication and Exposition and the National Fiber Optic Engineers (OFC/NFOEC), Conf., pp. 1-3.

  12. Silva, E., Carvalho, L., Franciscangelis, C., Diniz, J (2013) Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid, Proc. of Optical Fiber Communication and Exposition and the National Fiber Optic Engineers (OFC/NFOEC), Conf., pp. 1-3.

  13. Koike-Akino, T., Millar, D.S., Parsons, K., and Kojima, K., (2018) Evolutionary Design of Pulse- Shaping FIR Filter to Mitigate Fiber Nonlinearity, Proc. of Signal Processing in Photonic Communications (SPPCOM /OSA), Conf., pp. SpM4G-4.

  14. Zhao, J., Liu, Y., and Xu, T. (2019) Advanced DSP for Coherent Optical Fiber Communication, Appl. Sci, 9(19), pp. 4192.

  15. Shankar, R., Kumar, I., and Mishra, R.K., (2019) Outage Probability Analysis of MIMO-OSTBC Relaying Network Over Nakagami-m Fading Channel Conditions, Treatment du Signal., 36(1), pp. 59-64.

  16. Selvendran, S., Sivanantharaja, A., and Esakkimuthu, K., (2018) Investigation on the Influence of Duobinary and CSRZ Modulation Formats on Self Phase Modulation Effect in Optical Communication Network., Int. J. Sci. Res. Phys. Appl. Sci., 6, pp. 17-22.

  17. Secondini, M. and Forestieri, E., (2014) On XPM mitigation in WDM fiber optic systems, IEEE Photonics Technol. Lett., 26(22), pp. 2252-2255.

  18. Xu, T., Karanov, B., Shevchenko, N.A., Lavery, D. et al., (2017) Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect, Scientific Reports., 7(1), pp. 12986.

  19. Napoli, A., Maalej, Z., Sleiffer, V.A., Kuschnerov, M. et al., (2014) Reduced complexity digital back-propagation methods for optical communication systems, J. Lightwave Technol., 32(7), pp. 1351-1362.


Articles with similar content:

PERFORMANCE MEASUREMENT OF OSSB BASED ROF SYSTEMS INCLUDING THE EFFECT OF OPTICAL FIBER LENGTH AND FIBER CHROMATIC DISPERSION
Telecommunications and Radio Engineering, Vol.75, 2016, issue 3
Saniay Kumar Sharma, P. Kumar, S. Singla
RANGE ENHANCEMENT IN ROF NETWORKS THROUGH HYBRID DISPERSION COMPENSATING SCHEME
Telecommunications and Radio Engineering, Vol.79, 2020, issue 8
S. Malik, Abhimanyu Nain
Model of Algorithmic Interference
Telecommunications and Radio Engineering, Vol.68, 2009, issue 3
R. V. Antipenskii
APPLICATION OF SOFTWARE COMPLEX FOR QUERY PROCESSING IN THE DATABASE MANAGEMENT SYSTEM WITH NOVEL NOISE RESISTANT BISPECTRUM-ORGANIZED MODULATION TECHNIQUE IN DIGITAL WIRELESS COMMUNICATION SYSTEMS
Telecommunications and Radio Engineering, Vol.72, 2013, issue 18
V. V. Naumenko, A. V. Totsky, J. T. Astola, Karen O. Egiazarian
Efficiency of Autocorrelation Processing of Frequency-Modulated Signals with Due Account of Frequency and Time Mismatch
Telecommunications and Radio Engineering, Vol.67, 2008, issue 11
V. A. Mironov, Yu. N. Bobrovskii, V. M. Sokolov