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The numerical solutions of decoupled forward backward doubly stochastic differential equations and the related stochas-
tic partial differential equations (Zakai equations) are considered. Numerical algorithms are constructed using reference
equations. Rate of convergence is obtained through rigorous error analysis. Numerical experiments are carried out to
verify the rate of convergence results and to demonstrate the efficiency of the proposed numerical algorithms.
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1. INTRODUCTION

In this paper, we consider the numerical solution of forwaadkward doubly stochastic differential equations (FBDS-
DEs)

X' =z + / b(X®)dr + / o(Xp®)dW,, t<s<T
t

«—

t
T T
vir = nx) [ x| gl Xy, 200, M

T
—/ ZhdW,, t<s<T

in relation to the following stochastic parabolic partidferential equation in backward form:

T T o
ug(z) = h(x) —|—/t {Lus(x) + f[s,x,us(x), Vus(z)]}ds —i—/t gls, z,us(z), Vus(z)|dBs, t €10, 7] (2)

Here f andg are given functionsB; andW,, 0 < t < T, are independent standard Brownian motions, the integrals

involved with dﬁt are the It6 integrals with backward integration whose nrgawill be made clear in Section Z,
is the elliptic partial differential operator defined as

(Lug)i(z) = [L(ug)i](z), 1<i<k

with
1< 2 ;)
L:= - *i' i
2;_:1(“)36 5, T s,
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Equation (2) is also called the Zakai equation, which candrs&ved as the density function of the conditional expec-
tation in nonlinear filter problems [1].

There have been extensive studies on numerical solutiofiakafi equations, both as general stochastic parabolic
partial differential equations and in the context of noeéinfilter problems. Several methodologies have been devel-
oped, among them are the finite difference methods baseceatigtretization of general stochastic parabolic partial
differential equations [2—6], Wang-Zakai approximati¢ris spectral methods based on Wiener chaos expansions of
the exact solutions [8, 9], and the Monte Carlo method basgzhdticle approximation of the conditional expectation
[10-12]. We also Refs. [13] and [14] and references themmimfore recent developments.

In this paper, we attempt to construct an efficient numeatgdrithm for the FBDSDE (1) and to solve the Zakai
equation (2) numerically through an equivalent relatiop&ietween (1) and (2). Such an equivalent relationship was
proved by Pardoux and Peng [15, 16]. An FBDSDE is the extensfa backward forward stochastic differential
equation (FBSDE), which is the same as (1) without the BrawmnotionB involved. There have also been numer-
ous attempts to solve FBSDEs numerically. The first such tamgt was due to Ma et al. [17] where a four-step
scheme was constructed through numerical approximati@nrefated partial differential equation. A binomial tree
approach was proposed in [18] and further developed laféin In both aforementioned approaches, high regularity
is required for the input data and/or the exact solution.r&atinumerical approximation was developed in [20] which
reduced the regularity requirements. More recently, ssadfigh-order numerical algorithms is constructed thioug
reference equations and a multistep method [21, 22]. Inré#gearch, we follow the general framework of [21] to
construct efficient numerical algorithms for (1). The nayelf our approach is threefold. as follows:

1. Though there have been extensive studies on the theogpgmtidations of FBDSDES, to the best of our knowl-
edge, this is the first attempt to obtain practical algorghmsolve FBDSDESs numerically.

2. Our algorithm provides numerical solutions for both thieiSon « of (2) and its gradien¥«. This is significant
because, in many practical problems, the diffusion flux isoseuseful physical quantity.

3. Our numerical algorithm enjoys the same convergenceastather finite difference algorithms for solving
parabolic SPDEs [3, 6]; however, the error analysis of ogo@ddhm is less complicated. Furthermore, our
algorithm has the potential to be extended to obtain highdgreschemes.

The rest of the paper is organized as follows. In Section 2giwve a brief introduction to BDSDEs and their
relations to SPDEs. In Section 3, we propose a class of naalexigorithms for BDSDE (1) and derive their error
estimates. Then in Section 4, we present numerical expatgte verify the rate of convergence results derived in
Section 3. A few concluding remarks are given in Section 5.

2. BDSDES AND SPDES

To derive the numerical algorithm and conduct its convecgamalysis, we provide a brief introduction to FBDSDESs
and the relationship between FBDSDEs and the SPDE (2).

Let (A, F, P) be a complete probability space afic> 0 be the terminal time{1V;,0 < ¢t < T} and{B,,0 <
t < T} be two mutually independent standard Brownian motions defom(A, 7, P) with their values inR? and in
R!, respectively. LetV' denote the class of P-null sets.5f For eacht € [0, 7], we define

Fo=FYVFr
whereF}, = o{n, —ngs < r < t} v N the o-field generated byn, —ny;s < r < t}, andF' = Fg, for

a stochastic process Note that the collectiod F;,t € [0,T]} is neither increasing nor decreasing and is not a
filtration. For positive integern € N, we define space&/?(0, T; R™) andS?([0, T; R™) as follows.

T
M?*(0,T;R") := {@4|p; € R”,E/ l@:|?dt < 0o, @ € F;, aetel0,T]}
0
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and
S2([0, T);R™) := {@¢|@: € R™, E( sup |@¢]?) < o0, @; € Fy, t €[0,T]}
0<t<T
Let
f:Ax[0,T] x R* x RF*d _ RF
and

g:Ax[0,T] x RF x RF*d _ RFX!

be jointly measurable such that for afiy z) € R* x RF*9,
fily, ) € M*(0,T;R¥)

9e(y, ) € M?(0,T;R*)
We assume, moreover, that there exist constant®) and0 < « < 1 such that for anyw, t) € A x [0,T], (y1, 1),
(yg,ZQ) e RF x Rle,
[fe(yr, 21) = felyz, z2) P < ellyr — ya2l® + 121 — 221?)
19¢(y1, 21) = ge(y2, 22)II?

From [16], under the above assumptions and standard congliinb and o, we know that there exists a pair of
processes (Y}, Zt®); (t,z) € [0,T] x R?} that is the unique solution to the following FBDSDE: Rorz) €
]R+ X Rd

<y — yol? + |21 — 2o

X;*z =z —i—/ b(Xﬁ"z)dr —|—/ O‘(X;E’m)dWT, t<s<T 3)
¢ ¢

T T T
Y 4 h(XET) + / Flr, X5% Y% 20 dr + / o(r, X55 Y7, 20V d B, — / 2L dW,, t < s <T (4)

where(Y®, Z6%) € §2([0,T); R¥) x M2(0,T; R¥*!). Here,d B, denotes the backward Ito integration, i.e., for a
]-'ET adapted procedg, and quasi-uniform time partition§: 0 =ty < t; <ty < - - <tny_1 <ty =T,

T - . N
/0 VidB, := AI%IEO;VMH(BMH ~ By,)

whereAt = o hax 1(ti+1 —t;). According to Pardoux and Peng [16], we have the followinglim@ar Feynman-Kac

formula:
}/st.'z = US(X?z)a Z?m = (VUSO‘)(X?m)a (t,I) € [OvT] X Rd

whereu = u;(x) € R* is the unique solution of the following system of the backivstiochastic partial differential
equation:

T T o
ut(x)—i—h(x)—i—/t {Esus(:v)—l—f[s,x,us(x),(Vus(r)(x)]}ds—i—/t gls, z,us(x), (Vuso)(z)]dBs, 0<t<T (5)

To simplify our presentation, in what follows we assume that0 ando = 1 in Eq. (3). Thus we have
X0 =p+ W, x€Q,5€]0,T]

and the elliptic partial differential operatérbecomes

L:

d 62

N | =
o
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When the spatial domail of the SPDE (5) is a subset Bf' and the boundary condition
ug(x) =y(t,x), on [0,T] x 09
is prescribed, the corresponding BDSDE is defined througbmpig timet defined as
T=inf{s; X:" € 0Q,s > t,x € O} (6)

Then, we have the BDSDE with stopping time as follows:

TAT TAT P
Yst,w _ (I)(Xrgra/\T) _|_/ f("’, Xﬁ’I,YTT’I,Zﬁ’I)dT _|_/ g(T, Xﬁ,m’YTr,m’ Zﬁ’m)dBT

TAT (7)
— / Zﬁ’IdWT,tgngJcEQ

where® (X7 ) = WXp") st + (T, X2¥) Le<. Whent = 0, the stopping time defined in Eq. (6) becomes

T =inf{s; XO* € 0Q, s > 0z € Q}
Thus, BDSDE (7) changes to the following equation:

TAT

TAT
YO = a(xin)+ [ pe Xm0 200 s - [z,
t

TAT
t

TAT
+ / g(s, X7 YO0r 700 dB  t€[0,T], v €
t

where for givenr, X'* =z, ®(X0%) = h(X9") st +v(T, X2%) Le<7. The related SPDE is

T 4 2u.(x
(@) = )+ | {%Zaa;z( )+f[s,x,us<x>,ws<x>1}ds

=1 g

T
+ [ glsau@) Vu@ldB., se@0<t<T
t

ug(x) = y(t,z), on[0,T]x 0N

3. NUMERICAL ALGORITHMS AND ERROR ESTIMATES

For the simplicity of presentation we only consider the diteensional case. The high dimensional cases can be
handled through straightforward generalization of the-dimeensional case. To simplify the notations, we shall
use(y:, z;) to denote the solutiofiY,"”, Z;**) of the BDSDE (4). We also denol#,*[X] = E[X|FY'**], where
FWte = og(x+ Wy — Wit <s<T)Uo(B;0<t<T).

3.1 Reference Equations

To further simplify the notations, we denofés, ys, zs) = f(s, X1%, ys, 25) andg(s,ys, zs) = g(s, X1%, ys, 25),
knowing thatr € 2 C R. Then we have

t+6 t+6 t+6 -
Yo = Yo + / F(5,yes 23)ds — / W, + / 95 yer 22) B, ®)
t t t

where$ is a deterministic nonnegative number with- 5 < T'. Taking the conditional expectatid{“[] on Eq. (8),
we obtain

t+0 t+0

R t,x t,x <=

g = B[y s) + / B[ (5, yo, 2)]ds + / E[g(s, ys, 2) 0B, ©)
t t
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whereyf’m = Ei’m[yt]; that is,yf’E is the value ofy; at the time-space poirit, z). We use the simple right point
formula to approximate the integrals in Eq. (9),

t+5
/ By [f (s, ys, 25)lds = SB[ (¢ + 8, Yrys, ze15)] + Ry (10)
t

B t,x 5 t,x ey B
/ Ey®lg(s, ys, 25)|dBs = E%[g(t + 8, ytts, 2145)|A B + R (11)
t

Wger_eRZ" ande denote the corresponding errors of approximations. limgeEqgs. (10) and (11) into Eq. (9), we
obtain

t,x _ mt,x t,x t,x ey 12

Y = By [yers] + OB T [f(E+ 8, yevss zevs)] + By [g(t + 8, Yivs, 2e45)]ABL + R, 12)

whereR, = R‘}f/ + Rf is the truncation error for solving,. Let AW, = W, — W, fort < s <t + 6. Multiplying
by AW, s on Eq. (8), taking the conditional expectatﬂﬁbm[-], and applying the I1td isometry, we get

t+0

t+8 i+ —

—Eb* AW, s] = ES7[f(s, ys, 2s) AW,]ds ES%[g(s, ys, 2s) AW |dBs — ES%[z]ds  (13)

t [yt+5 t—l—é] + [f( y Ys, s) s] + + [g( s Ys, s) s] s t [s]
t t t

Similar to Eq. (12), we approximate the integrals in Eq. (@& the right point formula to obtain

t+0
/ By £ (5, Ys, 2) AW]ds = SEy [ (t + 8, Yers, 2e46) AWiss] + RYY (14)
t
t+5
— / El*[z)ds = —820" + R, (15)
t
and

s t,x 5 t,x B

/ Ey*g(s,ys, 2s) AWs|dBs = Ey " [g(t + 0, Yits, 2045 AWy 5] ABy + R (16)
t

wherez,” is the value of; at the time-space poilt, z), andR",, RY,, andR? are the corresponding approximation
errors. Inserting Egs. (14)-(16) into Eq. (13), we get treed-approximation equation for Eq. (8) as follows:

—E{7 [yes s AWis] =SB [f(E+8, Yers, 2e46) AWiis]| =020 " +Ey“[g(t+8, Yirs, 24.5) AWips|ABy + R, (17)

whereR, = R + R + RB is the truncation error for solving . Equations (12) and (17) are two key equations of
solving BDSDE (8) numerically. We refer to them as refereageations.

3.2 Discrete Scheme

To derive a numerical algorithm from reference equatioi@$ éhd (17), we introduce the following time partition on
[0,T7:
Rin = {ti|ti S [O,T],ti < ti+1,i = O, 1,.. .,NT —1,tg = O,tNT = T}

Let At,, = ty41 — tn, aNdAL = maxo<p<ny—1 Aty,. We discretize (12) and (17) by substituting, y:, andz, with
tn, At, with y™ andz", respectively, and dropping the errors terms in (12) angl (@©btain the following numerical
algorithm for solving BSDE: given random variab)&, forn = N — 1, N —2,...,1,0, solve the random variables
y™ andz" backwardly by

y' =BTy T 4 AT f (b, " 2T + B gty 2 T]AB, (18)
and
0 = B [y" ™ AW, ] + AL B[ f (b, y™ T 2T AW, (19)
+ Ei:"z[g(tmrl, y" T 2O AW, L JAB,, — Atz
Obviously,(y™, 2™) is an approximate solution fdg;, z;) att = t,,n =0,1,..., Np.
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3.3 Regularity of the Exact Solution

To derive the error estimates, we first need some regulagylis for the exact solution. We assume thaind g
satisfy the following properties.

E{[f(s,y1,21) = f(t,y2, 22)]*} < L(|s — t| + [y1 — yal® + |21 — 22|?) 20)
E{lg(s,y1,21) — g(t, y2, 22)]°} < La(ls — t| + |y1 — y2|*) + La|z1 — z]?

whereL, L,, andL, are positive constants afd< L. < 1 (see [16] for similar assumptions). We also assume that
the derivatives'y,, f,, f., g%, g;, andg., of f andg are all continuous and bounded. [\éy;-*, Vz/*, andV X" be
the variations of/%-%, 5%, Xt with respect tar at time levelt = r. Then, the following equation holds:

T
Vylt = (X7 VX" + / [Fa(r, X022y, 20" )V X0® o fo (r, X%, g™, 207 ) Vo
s
T
f; (’f‘, X;E’Ia yfﬂ’wa Zﬁ’m)vzfjm]d'f‘ + / [g; (Ta Xﬁ’ma yfjm7 Z;E’I)VX;E’I + gly (’f‘, X;E’Ia y£7$7 Z;EJ)Vyf«’w (21)

+

ST
b okl X0, 2 0sldB — [ vk,
whereV X" is the solution of the following SDE [see [20], p. 464, Eq.)|12
VXQI =1 +/ 3xb(7")VXﬁ’wdT +/ 3IG(T)VX£,deT
¢ t

We have the following result concerning the regularity & slolution(y:, z:) of the FBDSDE (4).

Proposition 1.
Assume that Hypothesis (20) holds and the derivatfles,, /., g., g,, andg’, of f andg are all bounded, then we
have

Bl(ys" —y")’] < Cls — | (22)

and
E[(z0" — 2;7)’) < Cls — (23)

Proof: Under the assumptions of the Proposition, pardoux and H&6gproved the estimate (22) and the fol-
lowing estimate
sup Bl(yo®)’] < C

t<s<T

whereC is a constant. To obtain (23), we use the fact that (see [1@RP, Proposition 2.3)
A = Vil (VX T o(XL)

and
2" = Vy"o(2)

Now, we treat (21) the same as Eq. (4) wjtheplaced by
o (r, X0y, ™) VXD o+ [ (r, X507y ®, 2 ) V™ o+ fL(r, X% g™, 20" ) V]
andg replaced by
6, X174, 2P )T XEP + g, XE¥ 4%, 2 Tyl 4 gl (r, X%, 0) V2t

™
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and use the same result of Pardoux and Peng [16] to obtain
E[(Vyy™ = Vy; ")l < Cls — t|

and

sup E[(Vyi®)?*]<C
t<s<T

Because of the assumption that 0 ando = 1, we have that
VXL = (VX" Tl =1

ando = 1. Thus,
Bl(z£" — 2")?] = EI(Vyt™ = Vy")? < Cls — 4

S

3.4 Estimates of Truncation Errors

For the sake of simplicity of our presentation, in the segquel useF;,[-] to denoteE;""[]. Recall the numerical
scheme

n

y" = By [y 4 Atn By [f(tng1, y" T 2"+ ABy, L B [9(tgn, T 20T

1
2= E {Etn [yn+1Ath+l] + AtnEtn [f(tn+17 yn+17 Zn+1)Ath+l]
+ ABtn+1Etn [g(thrla ynH, Zn+1)Ath+1]}

and the reference equations

Yt, = Etn [ytn+1] + AtnEtn [f(thrla Ytri1s Ztn+1)] + ABtn+lEtn [g(tn+17 ytn+lztn+l)] + RZ

1
2ty = E {Etn [yt71+1AWt71+1] + AtnEtn [f(tn-i-lv ytn+17ztn+1)Ath+1]

1
=+ ABtn+1Etn [g(tn+17 Ytni1s Ztn+l)Ath+l]} + ER:

where(y,, , 21, ) is the exact solution. We have truncation errgsand R} for y andz, respectively, as

tni1 tnt1 —
RZ = / Etn [f(saysvzs) - f(tn+17ytn+l7ztn+l)]ds + / Etn [g(svysazs) - g(tn+1aytn+1vztn+1)]dBS
t t

n n

tnt1

R? + Etn {[f(sa Ys, Zs) - f(tn+17 Ytrtrs Ztn+1)]Ath+1 }dS

tn
tnt1

«— tn+1
+ B, {l9(s,ys,25) — 9(tna1, Ytnins 2tnir )JAW:, . }d B s + / By, [zs — 21,]ds
tn tn

Denotef; = f(t, yt, 2:) andg: = g(t, ys, 2¢). By Proposition 1, we have the estimates

m E 2
_ <C.
ogngazir(q (Yt — Yt )] < C- At

and
2
m E _ <C.
ogngaz)\%q [(Zt" Ztn—l) ] <C-At

For the truncation erraR;;, we have the following estimate.
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El(R)] < <7lzxtn./f B (5,500 20) — Fltasr vt 2P}

n

tnit
+ Cz/ E{[9(8,Ys: 25) — 9(tnt1, Ytn 1s 2t00)]° Hds
t

n

tnt1
< Cletn/ E{[tn-l-l - S] + (ys - ytn+1)2 + (ZS - Ztn+1)2}ds
t

n

tnit
4 0 [ Bl 5) 0 ) o )P < O

Similarly, we have
E[(R2)%] < K(At)?
3.5 Error Estimate for y

DenOteeZ =Yt, — yn, 67; = Zt, — va 6? = f(tna Yt Ztn) - f(tnu yna Zn), ande; = g(tna Yt Ztn) _g(tnu ynu Zn)
We have the estimate ef; for scheme (18) and (19) in the following theorem.

Theorem 1.
Let (v, z:) be the exact solution an@™, ™) be the solution of the scheme (18) and (19). If Hypothesi$ (€0
satisfied and the derivativgf§, f,, f., 9., g,,, andg., of f andg are all bounded, then

Elep]? < CAt

max
0<n<N-—1
whereC is a constant.

Proof: We first decompose the error fgras

¢y = Buley ™) + B, [ )AL + By, e T AB,

v + Ry

n+1

Taking square on both sides of the above equation and thangtekpectation, we obtain

Elep? = B{(Ew, ey + ABy,, By, [ep ™+ R))? + (At, By, e} 7))

+ 2(Etn [eZ‘J’_l] + ABtn+1 Etn [eg"’_l] + R”’;)(AtnEtn [e}l+1])}
= E{|E. [ey™]? + (ABy,,. )2 B, [eg TP + (Ry)? + 2By, [ey ' ABy,, Bt [eg ] (24)
+ 2B, [ey T RE +2AB,, By [en TRy} + E{(At, By, [eF 1))}
+ E{2(Ey, ey ™)+ ABy, By eyt + Ry (At By, [ef )} = Ay + B, + C,
where
Ay = E{|E, [ey™]? + (ABy,,,)?| B [ey 1P + (Ry)? + 2B, [y T ABy, By, ey ]
+ 2E;, [eZ“]RZ + 2ABtn+1Etn [eg“]RZ}
By = E{(At,Ey, [} 1)}
and

Cy = E{2(Ey, [ + ABy, , By el ] + Ry)(At, By, [e?“])}

Yy g

Next, we use Cauchy’s inequality and Young’s inequality #redfacts that

) tnt1 —
E{&J£+L/’ EMMa%Jg—mmﬂwaawmmx}—o
t'Vl
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and -
| B ) = Fltairs o, < O
to obtain )
Ay = E{|E, [ey ™ + (ABy, ., )?|Br, ey TP + (RY)? + 2By, [ey V' AB, By, [eg ]

+ 2B, ey TRy + 288, By, e TRy < B{|E, [ey TP} + Atu BBy, [y}

tnit
+ E[(RZ)2] +2E {Etn [e;H_l] : / Etmn [f(S, Ys, ZS) - f(tﬂ-i-lv ytn+172tn+1)]d8 + Etn [e‘n—i-l]
t

n

tni1
[ B o) = 0t B |+ At BB P+ | 22| @)
t

n

IN

E{|E:, [ez+1]|2} + At, E{|E,, [e;‘+1]| }+ E[(R") |+ At Ele "*1]

tnt1
[ B 20) = Hrs s, + At elE{|Etn["+l]|}+E[ <R">]
t

n

< E{|E., [ey TP} + Aty E{(1 + €1)| By, [e) TI*} + Atn Elept']? + C1(At)?
wheree; > 0 is a constant to be determined later. By the Lipschitz caotrof f, we have
By = B{(AtnEy, [e}T1])*} < L(Aty)*(Eley ™) + Ble™]?) (26)
Similarly for Cy, using Cauchy’s inequality and Young’s inequality, we dita

Cy = E{2(Etn[ n+1] + ABt7l+lEt7l[ n+1] +Rn)(At Etn[ n+1])}

i B [eg T + Ry} + At e B}

1
< At,—E{E, [ep*'] + AB,
€2

< At, iE{Et [l o Aty (LyEy, [012 + LoEy [2F]2) + (R])?) 27)

Yy Yy
+ AtnE{LeyEy eyt ']? + LesEy, [T} < At CoE[e)™]?
+ (Aty)*Cs(E[ep™)? + E[e2™)?) + AtpLes Ele? 12 + Cy(At)?
wheree, > 0 is a constant to be determined later. Combining (24)—(2ygtteer, we obtain
Eler? < E{|E, [e)T]1?} + Atn E{(1 + €1)|Ey, [e) ']} + AtnLeos E[el ] + K1 Aty E[e) ] (28)
+ Ka(At,)?Ele?™)? + K3(At)?
Fore?, we have the identity
Atnel = By [eg T AW, ) + Aty By [V AW, 1+ ABy, L B [eg VTAWG, LT+ R (29)
Taking the square on both sides of Eq. (29) and then takingaa&fion, we obtain
B[At,el? = E{B [ey " AW, ]+ ABy, By, g AW, ]+ REP+E{(Atn) By, [} AW, 7}
+ 2E{(FE}, [e"+1AWt )+ AB,  E; [el}*lAthH] + R)(At,Ey, [eerlAthH])}
= B{(Bt,ley " AW, ) + (ABy, ., ) (B, [eg T AW, L ])7 + (RE)?
2By, [ep T AWy, (B, (e TP AW, L )ABy, 4 2(Ey, [ep TP AW, L)) RE (30)
2B, [ey AW, JABy, , RY} + E{(At,) By, [ef T AW, 17}
2E{(Ey, [ey T AW, ]+ ABy,, B e T AW, ]+ RY) (At By [ef T AW, D)}
A, +B.+C,

+ o+
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where
AZ = E{(Etn [eZ+1Ath+1])2 + (ABtn+1 )2(Etn [e;l+1Ath+1])2 + (RZ)2 + 2(Etn [eZ+1Ath+1])
X (B, [edt ' AW, ())ABy,, + 2(BEy, ey T AW, ) RE + 2B, [e) T AW, JAB, RY}

n+1 ntl

B. = E{(At,)?E, e ”*%thﬂ] }

and
CZ = 2E{(Etn [€Z+1Ath+l] + ABt7l+1Et71 [e;l-i_lAthH] + R? : (AtnEtn [€?+1Ath+1])}

For any.F}V adapted procesk;, we have

(Etn [th+1Ath+1])2 = {Etn [(th+1 - Etn [th+1])Ath+1]}2 S Etn{('th+1 - Etn [th+1])}2Atn

(31)
= Atn{Etn[(th+1)2] - |Etn [th+1]|2}
For A., using Eq. (31), Cauchy’s inequality and Young's ineqyalite have
AZ = E{(Et [en+1Ath+1])2 + (ABtn+l) (Et [en+1Ath+1])2 + (R?)Q + 2(Et [en+1Ath+1])
x (Ey, [eZﬂAthH])ABth +2(Ey, [QZHAW%H])RQ +2F;, [eZJrlAthH]ABth 1
< E{(Et [en+1Ath+1])2 + (ABtn+l) (Et [en+1Ath+1])2 + (R2)2 + €(E [ n+1Ath+1])
1 n n 1 n n n
+ E(Rz)z + el(Etn [eg+1Ath+1]ABtn+1)2 + _(Rz)2 < AtnE[Etn [ey+1]2 - |Etn [ey+1]|2] (32)
+ (At,)’E[E, [eg ™) — |Er, [ey T °] + E[(R)?] + eAt E{Et ey ™% — | By, [ey %)
1
+ EE[(R?F] + e1(Atn)’E[Ey, [e) T2 — | By, [en )] + 2 E[(R") ]
< (14 e)AtnE{Ey, [ey ™1 — | B, [ey TP} + (1 + e1)(A n) E{E, eyt — |Ey, [eg ™17}
+ C5(At)3
Under the conditions in the theorem, we have
B. = E[(At,)*E;, [e?*lAthﬂ]Q] < Cs(At)? (33)

Similarly, using Cauchy’s inequality and Young’s ineqtialive obtain

C. = 2B{(E,, [} AW, ., ] + ABy, By [0 AW, ] + RY(At, By, [F AW, L))

n+1] n+1

IN

Atne_E{(Etn [€Z+1Ath+l] + ABt7l+1Et71 [e;l-i_lAthH] + R?)}2 + Atn€2Etn [e?+1Ath+l]2
2

IN

(Atn)zg{E[eZ“]z + At Ly Elef ' + Aty Ly Elel ™) + (R2)?}
; : :

+ (Atn)’Lex{Ele)™]? + Elel ™%} < C7 {(Atn)*Elel ™) + (At,)* (Ele) T + Ele2)?)}
+ (At,)?LeaEle™1)? 4 Cg(At)3
(34)
Here,e; ande, are same as in Eq. (28) ards a positive constant, which will be determined later. Caring (30)
and (32)—(34) together, we get
E[At,e?]? < (14 e)Atn B{Ey, [ey ™ —|Ep, [ey "2} (1 + e1)(Atn ) E{Ey, [eg 1> — | By, [eg 717}

35
+ (At,) LesE[e™™? + K4(At,)?Ey, [e;;“]? + K5(At,)Ey [e" )2 + Ko(AL)? (35)
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Next we divide byAt,, (1 + €) on both sides of Eq. (35) to obtain

Aty 1+e€ " "
[e2)? < E{E, [ep™]? — By, [ep ™2} + (Aty) lE{Et [ent11? — | By, [ep %)
+ (Atn)LlffeE[e:*l] + K4Atn By, [ep ™) + Ks(Atn )2 By, [e2)? + Ko(At)?
Adding (36) to (28), we obtain
Bl + S B < BB, [P+ AtuBI( + el By )] + At LesBler )
tni1
+ KAt Ele] ™) + Kao(Aty)?Elel ') + K {h2 +E U |25 — 24, |2] ds}
tn
n+1 nt17)2 I+e n+1 n+1
+ E{E. ey — |Ew, [ep TP} + (Aty) o - E{E:, [eg 12— B, [ey 1P}
4—(AuJLljf€E[”+w + K4Ab, By, [0 + K5 (At,)2Ey, [ ]2
2 b1 2 ni2 I+e n+1127 (37
+ Ks! (At + E |z — 20, |*|ds :E@]+@tH+ B{E,, et} (37)
tn
1+e€; €2+ €9 + €€
At,, E{|E, [e"T1])? At L—=——= " "= F[enT1)?
- (Aty) T eB{ B, e ) + (At) LR B
+ GlAtnE[e;‘“] + Go(At,)2E[emT1? + G (At)?
1+¢ 1+ ¢ €2+ €2 + €€2

< n12 n+112
< Eley] +(Atn)<L21+€+L21+€€+L T+e )E[ez ]

+ G1AtE[el T + Go(At, )2 Elel ) 4+ Gs(At)?
Now we choose, €1, andes, all positive, sufficiently small such that
Lo(1+€1)+ Loe(l +€1) + L(2e2 + €€9) <1
This is possible becaude, < 1. Thus, by Eqg. (37), we have

At,,
1+ €

At,,
1+ €

At,,
1+ €

Ele"]? +

Y

Ble2)* < Eley]* +

Y

E[e"™? + Ty At,, { [en )% 4

ey Elent1)? } + To(At)?
Denotee,, := Ele}]* + [At, /(1 + €)]Ele?]*. Then, the above equation becomes
en < (14+T1At)e,11 + Tg(At)2

By Gronwall’s inequality, we have

max {E[ei}]2 + At E[ef]z} < CAt
0<n<N-—1 : 1+e

as required.

3.6 Error Estimate for z

We first construct an approximate soluti@i, Z) with step process as follows. Let

Vioor =" 4 Aty - [P+ AB,, - g
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andg; = FV v FE. By an extension of Itd’s martingale representation teegrwe can find ag; adapted process
Z, such that

- - tnt1
Ytn+1 = E[Ytn+1 |gtn] + / ZpdW, (38)
t'Vl

Define a continuous approximate proc¢ss Z) as follows:

- fnt1
Y =y "t T (g — ) + 9" (Br,,, — By) —/ ZpdWy, t € (tn,tng1], n=0,--- ,N =1 (39)
t

where

fnJrl = f(thrlv ynJrl’ ZnJrl)
and

9" = g(tnrr,y" 2

By Eq. (19) and (38) it is easy to see that
tnt1 ~
At 2" = / E., [Z,)dr
tn

Thus,

tni1 tnt1
/ E[(zs — 2™)?)ds = / E
t t

1 [l ?
) ) (zs ~ AL /tn E:, [ZT]dr> ] ds
[ 1 tnt1 - 2
/t E (A—tn /tn E;, [zs — Zr]dr>

n

<2 B(Ew (e — 27 + | o [ BE G- o Pyrds )

tn

th1 q tn+1 .
ds < E/ A E [(zs — Z,)*]drds
n "t (40)

<9 {/tt+ E(z — 2,)%dr + (Atn)Q}

Now, we are ready to prove an error estimatezor

Theorem 2.
Let (y4, 2:) be the exact solution an@™, z™) be the solution of the scheme (18) and (19). Assume that hgpis
(20) holds and derivativeg,, f,, f., 95, g,, andg, of f andg are all bounded. Then fakt sufficiently small, we
have

N—-1 tnt1

Z E (zs — 2")2ds < CAt

n=0 tn

Proof: Fort € [tn, tny1], letel = y, — Vi, el = 2 — Zy, fr = f(t,y, ) andg, = g(t, 1, z). Subtracting

BDSDE (39) from Eq. (4), we have that

tnt1 tnt1 - trnt1
ey =€yt +/ (fs = f")ds +/ (95 — 9" 1)dB, — / esdW, (41)
t t t

Taking the square on both sides of Eq. (41), applying ltéfsiula [16] and taking expectation, we have
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tnt1 tny1 tnt1
Bl +E [ e = Bl 2E [ e (- gt has v B (g g s
t t t

1 tnt1 tnt1 tnt1
B+ B [ @t ter [ G- Pas B [ (g0 g s
t t t

€o
tn tn
< E(e n+1) ] + 1 E H(GS)?dS + E/ " 2¢(ys — yn+1)2 + (e1+ a)(zs — Zn+1)2ds
— 'lj Yy S S
t t

12 ft 512 f 2 n+1\2 (42)
< E[(ey ) ] +—F (ey) ds+CE (yS - ytn+1) + (ytn+1 -y ) ds
t t

tni1 1 tnt2 2
+E/ ((—:1 +—+ oc) zs — (At,) 7! / Ey, . [zr]dr
t €2 tn+1

2
tn+2
+(e1 +e2+ ) {(Atn)l/ E, .. [z ]dr—z”Jrl} ds
tnt1

whereey, €1, ande, are positive constants to be determined later. Becalige — v;)?] + E|(zs — 2:)%] < Cls —t|,
we have

tni1
E/ (s — yr,.11)2ds < C(AD)
t

2

tnt1 tny2 2 tnt1 tn2
E/ {zs - (Atn)_l/ Es, . [zT]dr} ds = E/ {zs — Ztpy T Bty — (Atn)_l/ Et, ., [zT]dr} ds
¢ tnt1 ¢ tnt1

2
tni1 tnt2
= 2E/ (zs — Ztn+1)2 + {(Atn)lf Et,o (20000 — zT]dr} ds < C(At)?
t tnt1

tnt2 5
Also, becaus@\tz" ! = / Ev,,,[Z,)dr, we have

tnt1

2
tnio tnt2 -
%mwl/’ mwymw—WH}fumm1/’ Bi o (er — ;)i
tni1 t

Thus, we can rewrite (42) as

tnt2

tn+1 tnt1
E[(e})?] + E/ (e5)?ds < El(ejr1)’] + CE/ (ejr1)ds + (e1 + €2+ ) E (e2)2ds + C(At)?
t t

tnt1
1 tnt1 )
—F Yd
+ o /t (ey)7ds

Choosec; andes small enough such thégé; + e2 + «) = K < 1 (becausex < 1). Then,

n+1 n+1 n+1
i [era<an [ w+Ewa]+@E/ (el +1)ds
2

tn+ tnio
+KE (e2)2ds + C(At)? < {(1 + C2AY)E[(el )] + KE (e$)?ds + C(At)2} (43)
tn 1 tn 1
:n+1 "
—i—C’lE/ (eZ)st
t
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By Gronwall’s inequality, we get

Y

tnio
El(e})’] < C {(1 + CoAt)E[(efr+1)?] 4 E/ (e5)%ds + O(At)z} (44)
tnit
for s € [ty, tn+1]. Now, we lett = ¢,, in Eq. (43) and substitute (44) in (43) to obtain

Y

tni1 tnt2
E[(ef)?] + E/ (e3)%ds < (1+ C1ADE[(e)r+1)*] + (K + CQAt)E/ (e5)%ds 4+ C(At)?
tn tn41

Now, by Theorem 1, we easily obtain

tnt1 tnt2

El(elm)?] + E/ (e5)*ds < E[(e}p+*)*] + (K + CAYE (e$)?ds + C(At)?
tn tn+1

Let At be sufficiently small such th@atAt + K < L < 1, whereL is a constant. Summing the above equation from

n=0ton = N — 1, we obtain

N-1 tnt1 tN
1-1)) E/ (e2)%ds < CAt+ L E[(e3)?)ds < CAt (45)
n—0 tn tN—1
Through a similar argument, it is easy to obtain
tN
E[(e$)?ds < CAt (46)

tN—1
By Egs. (40), (45) and (46), we conclude that

N—-1

tni1
Z E/ (zs — 2™)%ds < CAt
n=0 tn

as required in Theorem 2.

4. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments to yahe rate of convergence results obtained in Section 3 and
compare our numerical method to the finite difference mefoodtochastic parabolic partial differential equations
[6]. The conditional expectations in Egs. (18) and (19) carelaluated using Monte Carlo method or Gaussian
qguadratures [21, 22]. In our examples, we use the binongal tnethod which is amount to two point Gaussian
quadrature [5].

Example 1: In the first example, we consider the initial boundary valt@bfem,

w(z) = exp(z-T)sin {@] +/tT B;—;us(x) - (:17—!— é) uy(@) — ga%us(x) ds

+ /tT % exp(x - s) cos {B(T) - @} dB.
u(~1) = exp[(~1) - ] sin {B(T) _ @] #7)
ut(1) = exp(l-t)sin [B(T) — %ﬂ
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We construct the SPDE (47) in such a way thdtr) = exp(x - t) sin{ B(T) — [B(t)/2]} is the exact solution. The
corresponding BDSDE is given by

B(T B
Yot = exp(X* - T)sin [—(2 )] Les7 + exp(X%® - 1) sin [B(T) - (T)] Li<r
TAT TAT TAT
1 t 1 Bt
—|—/ — (XD 42 ) ydr — 222" ds —/ 2" AW, +/ ~exp(X{" - t) cos B(T)—ﬁ dB,
) 8 2 ) , 2 2

The numerical results are shown in Table 1 and Fig. 1. HEo&notes the number of spatial partition grids; (FD)
the number of time steps used in finite difference mettdd (BDSDE) the number of time steps used in our method
for solving the related BDSDE, and error (FD) and error (B[ESEhe errors of finite difference method and our
method, respectively. The results indicate that our allgoris comparable to the the algorithm of solving the SPDE
directly using the finite difference scheme, with a littigthér rate of convergence.
Example 2: In this example, we consider the unbounded SPDE initialesphoblem.
(@) = sine + D)eos2r) + [ (2200~ L] a
us(r) = sin(x cos T ) 5 (?x?us x 8Ius T S o
48

T —
+ / sin[W(s) + s][sin(Br + Bs) — cos(Br + Bs)] + us(x)d B

TABLE 1: Example 1

J | Np (FD) | Error (FD) | Ny (BDSDE) | Error (BDSDE)
22 25 0.0213 24 0.200
23 27 0.0177 26 0.0383
24 29 0.0112 28 0.0106
25 211 0.00587 210 0.00376
26 213 0.00313 212 0.00152
=15 T T T T T T
-2 /<><
st T ]
-
3t -7 4
_ 9 +
573 e /l : 1
L -4t 2 ]
°
-4.5 + b
-5} -
+ - BDSDE
-55 1 " —0—FD 1
—6 4
—6.5 e 1 1 1 1 1
-5 -4.5 -4 -35 -3 =25 -2
log(h)

FIG. 1: Example 1: Convergence comparison between the direct diffearence scheme and our scheme.
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whereu,(z) = sin(x + t) cos(Br + B;) is the solution of the SPDE (48). The corresponding FBDSDgiven
by

T ¢
Yo = sin[W(T) + T] cos(2Br) —/ 227 ds —|—/ {sin[W (s) + s][sin(Br + Bs) — cos(Br + BS)]—i-S’m}d(ES
0 0

t
- / 20T W,
0

The errors are shown in Table 2 and Fig. 2, in which er¥drgnd error £) are errors foly” andZ at time-space point
(t,x) = (0,0), respectively. These data also confirm our rate of conversgsults.

5. CONCLUSION

We constructed a numerical algorithm for FBDSDESs based omafarence equation formulation. Rigorous numer-

ical analysis proves the half order rate of convergencehfisralgorithm. Through an equivalence relation between
FBDSDEs and a class of stochastic PDEs (Zakai equationsglgarithm can also be used to solve these SPDEs
numerically. The rate of convergence of our algorithm is pamble to the general finite difference algorithms for

stochastic parabolic PDEs. Through stochastic Taylormesipa, our methodology has the potential of deriving even
higher order algorithms. Such a research is underway, andetults will be reported elsewhere.

TABLE 2: Example 2

J | Nr | Error () (u) Error (2) (Vu)
23 | 23 | 6.4096EF — 002 0.1188
24 | 24 | 3.2019F — 002 | 9.0028E — 002
25 | 2% | 1.4426F — 002 | 6.3314E — 002
26 | 26 | 7.2577TE — 003 | 4.1337E — 002
27 | 27 | 3.5995F — 003 | 2.7149E — 002
_2 T T T T T
- %
251 N © g
_< +
_3 = _ - - 4
- ’<> -
Sl I /A 1 * 1
= <&
<] 2
5 ]
g .
AT + - ErrorY |
i + —O— - ErrorZ |
,55 = 4
+
-6 L L L L L
=5 -45 -4 -35 -3 -25 )
log(h)

FIG. 2: Example 2: Convergence comparison between the approxinsatify andz.
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