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Singular source terms in the differential equation represented by the Dirac d-function play a crucial role in determining
the global solution. Due to the singular feature of the d-function, physical parameters associated with the d-function are
highly sensitive to random and measurement errors, which makes the uncertainty analysis necessary. In this paper we
use the generalized polynomial chaos method to derive the general solution of the differential equation under uncertain-
ties associated with the d-function. For simplicity, we assume the uniform distribution of the random variable and use
the Legendre polynomials to expand the solution in the random space. A simple differential equation with the singular
source term is considered. The polynomial chaos solution is derived. The Gibbs phenomenon and the convergence of
high order moments are discussed. We also consider a direct collocation method which can avoid the Gibbs oscillations
on the collocation points and enhance the accuracy accordingly.

KEY WORDS: generalized polynomial chaos, stochastic Galerkin method, singular source, Dirac d-func-
tion, Gibbs phenomenon

1. INTRODUCTION

Differential equations with singular source terms are commonly found in various areas of applications [1-5]. Singular
source terms are defined in a highly localized regime and play a crucial role in determining the global solution of the
given differential equations. It is important to capture properly such small-scale phenomenon induced by the local
singular source terms and understand the interaction between the small- and large-scale solution dynamics. Singular
source terms are mathematically represented by the Bifaaction, §(x — ¢), and its derivative(s) defined in the
distribution sense with a functiof{x), which is defined a&: = ¢ such that

/OO d(x — o) f(x)dx = f(c), and /_00 d(x — ¢)dx = 1. 1)

— 00

The derivatives of thé-function are also defined in a similar way for a functiffx), whose derivatives are defined
atz = c such that

| Se-af@is=-f@. [ §@-arwmd=r1e. @
where the superscripdenotes the derivative with respectito
Although singular sources are defined in a compact form mathematically, various uncertainties are easily involved
to define them physically. For example, it is not easy to pinpoint the location of the singular source term. The detection
of the singular object is based on the physical measurement, and such measurement has errors due to the locality of
the singularity. Thus the realistic model of the singular source term should include the uncertainty of the location of
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the singular source, which can be introduced by a new random vatiablthe physical space where theunction
is defined such as
5(x —¢) — 8(x — &),

whereg is a random variable replacirngn 5(z —c). Another type of uncertainties can be introduced for the amplitude,
for which one can rewrite th&function as the following form

d(x —¢) = nd(x — ¢),

wheren is a random variable. iy — 0, then the singular source term vanishes. One can consider other types of
uncertainties for thé-function besides the location and the amplitude. In this paper we consider the case where the
uncertainty exists in the location.

In many cases solutions of differential equations with singular sources are nonsmooth, singular, or discontinuous.
For example, in nonlinear optics, a defect in the optical media is modeled by the singular source, and such a sin-
gular source term plays a role as a potential around which the input signals yield nonlinear reflection and scattering
phenomena. These nonlinear phenomena have been investigated using nonlinear partial differential equations (PDES)
including the sine-Gordon equation

Ugt — Ugy + sin(u) = €d(x)sin(u), —oo <z <oo,t>0,u:R xR — R, 3
and the nonlinear Scbdinger equation
WPy + Poe + kP2 = €8(z), —oco<z<o00,t>0,0p:CxR"—C. 4)

Previous research shows that the global solutions of PDEs as given above are sensitive to the singular potential
term and that the mathematical structure of the solution dynamics is rich and complex [2, 3]. The sensitivity of the
global solution to the singular source term is amplified if uncertainties are involved, which makes the global solution
dynamics more complex. No significant research has been conducted for the uncertainty analysis for the solution of
such singularly perturbed differential equations. In this paper, as a preliminary research, we use the polynomial chaos
method to analyze the solution of differential equations with the singular source term.

The polynomial chaos method was introduced by Wiener [6] and was recently much further developed by Xiu and
co-workers [7—14]. The polynomial chaos method with the spectral method approach has gained great popularity these
days [15-17] (see Xiu's recent book and references therein [17]). The polynomial chaos method seeks the solution
in a higher dimensional polynomial space by introducing a random variable associated with the uncertainty. Then the
method expands the solution as a polynomial using the orthogonal polynomials [16, 17]. The orthogonal polynomials
are determined by the distribution of the random variables considered. Different distributions and the corresponding
orthogonal polynomials are given in Table 1 [11, 17]. In this paper we consider the uniform distribution and use the
Legendre polynomials for simplicity.

This paper is composed of the following sections. In Section 2 we consider the simple differential equation with a
singular source term. The uncertainty is in the location of the singular source term. The random variable has a uniform

TABLE 1: Continuous probability density functions and the associated orthogonal polyno-

mials [11, 17].
Distribution (PDF) Orthogonal polynomials Support
(1/2)X[=1,1] L;(z), Legendre polynomials [—1.1]
(1/V27) exp(—x%/2) H,(x), Hermite polynomials | (—oco, 0o)
" Lexp(—2/0)/T'(k)0* L;(z), Laguerre polynomials [0, co)
{[C(a+ B)]/[C()T (B} (1 — )P~ | PP, Jacobi polynomials | [—1,1]
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distribution. We derive the solution using the Galerkin method and provide some convergence results. We also consider
the case that the uncertainty is confined in a local regime. This assumption yields the domain decomposition method.
In Section 3 we discuss the Gibbs phenomenon which exists in the solutions obtained in Section 2. In Section 4
discussions on high-order moments are given. In Section 5 we consider the simple linear advection equation with the
singular source term. A similar solution is obtained for the time-dependent problem. In Section 6 we consider the
collocation method to solve the same time-dependent problem considered in Section 5. The singular source term is
directly projected to the collocation space. As a result, the direct projection method removes the Gibbs phenomenon
in the solution. In Section 7 we provide a brief summary and remark on future work.

2. AFIRST-ORDER DIFFERENTIAL EQUATION WITH UNIFORM DISTRIBUTION, & € [-1, 1]

First we consider the following simple differential equation for the real-valued funetioin

W 5@), zel-11, u(-1)=0 ©)

The exact solution is simply given by the Heaviside functi@fx:) which is an integral of the right-hand side of

Eqg. (5),8(x). The singularity is located at the origin for Eq. (5), but we assume that there is an uncertainty in the
location of thed-function and us€, as the random variable to denote the uncertainty of the location. Then the given
differential equation becomes

du

B S(x—§&), ze[-1,1], wu(-1,&) =0. (6)

The solutionu is now a function of botlr and§. We also assume thathas the uniform distribution and is defined in
the same interval of, i.e., & € [—1, 1], with the probability density function (PDF) given 6y/2)x[_1,1](&) where
x(&) is the characteristic function. The assumption of the uniform distribution yields that the associated orthogonal
polynomials forg are the Legendre polynomials, as given in Table 1. The Legendre polynomials are defined by
the solution to the Sturm—Liouville probled(1 — z?)[L;(z)]'} + I(l + 1)L;(z) = 0 with x € [—1, 1] with the
orthogonality conditionf_l1 Li(z)Ly (z)dx = [2/(20 + 1)]dy,, where the superscriptdenotes the derivative with
respect ta and? is the Kronecker delta.

The solution of Eq. (6) is obvious,

fo i<k
u(%&)—{l — (1)

Let E(u) denote the expectation valuewfandVar(u) the variance ofi. These two quantitiedy (u) andVar(u),
are all functions of: only. Let f(z) = E(u) andg(z) = Var(u). Then we have

1

(@) = Eluta,£)) = |

-1

u(, &)y X[ (E)dE = 5 (z + 1) (®)
Similarly,
ol@) = Varlu(w8)] = [ 0850 (0 = (B = (1= 22) ©

Definition: Letu® (), u(? (z) andu(z, &) be defined by the Galerkin solution of Eq. (5) in Legendre polyno-
mials, the Galerkin projection of the exact solution of Eq. (8),z) and the polynomial chaos solution of Eq. (6),
respectively. The superscripts) and(2) denote that the associated quantity corresponds to(x) andw? (z). For
examples () and@(?) are the expansion coefficients«gf) () andu(? (z), respectively.
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First we conS|der the function® (z) = >°;2, ulz)Ll( ), which is the direct projection of the exact solution of
Eq. (5), thati |s;ul ) are given by the following equation:

= a4 Li(x). (10)
=0
Lemma 1. The expansion coefficieni§2) in Eq. (10) are given by
1
3 =0
ﬁl(2) = 0 [ =even - (11)
1
—§[L[+1 (0) — Ll_l(o)] [ =o0dd

Proof. By multiplying each side of Eq. (10) b¥;(x) and using the orthogonality of the Legendre polynomials, the
expansion coefficients are given by

2041 1 2041
a§2>=lT+ / H(z)Li(2)do ZT+ Li()da. (12)
—1 0

If [ =0, itis obvious thaﬁl@) = (1/2). Forl # 0, we use the following property of the Legendre polynomials [18]:

(21 + 1) Ly(z) = Lyyy (z) — Ly_y (2), (13)
and

@+ D) [ L) = L) - L), (14)

—1

Smcef0 Liy(x)dx = f Ly(x)dx for | = even andf0 Li(x)dx = — [ Ly(x)dx for I = odd, the above relations

yield
2 (1)
u; = 5

[Li4+1(0) = Li—1(0)]. (15)

SinceL;(0) = 0if | = odd, we obtain Eq. (11).

Next we consider the function®)(z) = 372, @ A(l L,(z), which is the Galerkin solution of the differential
equation, Eq. (5). By plugging") () into the d|fferent|al equation and the initial condition, we have

oo

> L) = 8(a), (16)
1=0
S oV Li(-1) =0 (17)
=0
Lemma 2. The coefﬂmentA( ) , satisfying Egs. (16) and (17), are given by
1
3 =0
ﬂl(l) = 0 |l =even - (18)

—%[Ll+1(0) - Llfl(O)] [ =o0dd
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Proof. From Eq. (13) we have
Ly(z) = Lo(w) = (2- 1+ ) La(a),

Ly(z) — Ly(z) = (23 + 1) Ls(a),

Lg(x) — Ly(z) = (2-541)Ls(x), (19)
L (@) = Ly (@) = 2+ (n = 1) + 1] Lo (a).
Adding both sides of Eq. (19) all together, we have
L.(x) = 1+ 5La(x) + 9La(x) + 13Lg(z) + - + (20 — 1) L1 (2), (20)
for n = even. Similarly, we have
L, () = 3Ly (x) 4+ TLs(x) + 11L5(2) + - - + (2n — 1) L,,_1 (z), (21)

for n = odd. From Egs. (20) and (21), we know thbj;l(x) is a linear combination of all the previous odd «ifis
odd) or even (ifn is even) terms with coefficient@k + 1) for Ly (x). By plugging Egs. (20) and (21) into Eq. (16),
we have

i i (20 = 1)Ly ()] = 8(2). (22)
In Eq. (22),--- means3L;(x) + 7L3( ) + 11L5(z) + -+ + (21 — 3)L;_o for evenl or 1 + 5Ls(x) + 9L4(z) +

13Lg(xz) + - - - + (21 — 3) L;_» for odd!{. Multiplying each side of Eq. (22) by (z) yields
Li(2) Y ]+ (20 = 1)Ly (2)] = Li(2)8(x). (23)
=0
We then integrate the above equation av@nd switch the left and right sides to obtain

L4(0) = i, / Lul) 2+ (o) + i1 | Lala) 2k DEa(o)de -+ il | Lu@) 2k + 1o

+ ;37/ Li@)(2k + V) Ly(@da + . = 2 (), +al)y + o)y +al; + )., (24)
where we used the orthogonality condition of the Legendre polynomials. Eqg. (24) also reads
Li12(0) = 2 (“1(623 i)y + 8l + - ) (25)
Subtracting Eq. (24) from Eq. (25) yields
i =~ Lkia(0) ~ Ly(0)) (26)

Now consider the boundary condition. Sin@%ﬁl vanishes if is odd, the boundary condition becomes

A(1 1 _ _
Z =, Jm S[Lksa(0) = Li(0)] = 0. (27)
1=0,0dd

This completes the proof.
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Finally we consider(x, &), which is the solution of the stochastic differential equation, Eq. (6),
u(e,8) = S @) (), (29)
=0
where the expansion coefficientsare functions ofc. Pluggingu(z, &) into the differential equation yields
fj iy (2) Ly(£) = 8(x — &), (29)

=0

where the superscriptdenotes the derivative with respectitoTo consider(z, &), let us first consider the general
case wheré, is defined in the subinterval aof

Domain decompositioné, € (—e, €). Assume that the location of tiefunction is confined in a small region
& € (—e€,€),0 < e < 1. The solution for Eqg. (6) is then given by

40 if z <§&
U(J%E)—{l fo>e’ (30)
whereg € (—e, €). In the intervalz € [—¢, €], the expectation value is
1
f(@) = Blu(z, &)] = - (z + €). 31)
Similarly, the variance is
g(x) = Varfu(z, &) = é((—:2 —2?). (32)

Thus, for a fixede, the expectation value and variance are given by

0 z €[-1,—¢€)
flz) = %(m +e) z€[-e¢€ , (33)
1 x € (e,1]
and
0 x €[-1,—¢€)
o) = { 1ele* —a) wel-ed] - (34)
0 z € (e,1]

For anye, we have
_ lal+ el

<
5e = 1, (35)

@) = |Bluo, 8] = |-+ €)

1 5 e 1

@(e — %) 3@21, (36)
which shows the expectation value and variance are bounded although tHeIPDk . (&) = (1/2¢)] diverges
ase — 0. We know thatr — 0 ase — 0, and we obtain the expectation value and variance at 0 by letting
e — 0. Also by Egs. (35) and (36) we have

lg()| = [Varu(z, £)]| = ‘

and ¢(0) = Var[u(0,&)] = -. (37)

N
e~ =

f(0) = Eu(0,8)] =
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These values are the same as thoseifar [—1,1). Thus, we know that if: — 0, the expectation value and the
variance are the same for any valuegof (—¢, €).

The assumption thdf € (—e, €) breaks the original differential equation into three equations in three regions, (1)
xel=[-1-€],(2zecll=(—€e],and B € IIl = (¢, 1].

Interval |, z € [—1, —€]: In this interval, thed-function is absent and the differential equation and the boundary
condition are given by

du
—_ = —]_ =
=0 u(=1)=0,
and the solution is simply
u(z) =0, wu(e)=0. (38)
Interval Il, x € (—e, €): In this interval, the5-function exists and the equation is given by
du(z,&) _
T or d(x —m),

wheren € (—e, €). Then we seek a solutian(z,n) as
u(zm) =Yz LiEm), (39)
=0

where¢, = (n/€) and§ € [—1,1].
Lemma 3. The expansion coefficients(x) in Eq. (39) are given by

1
—(xz+¢) =0
iu(z) = 2e . (40)

3 (2 () -2 (D)] 120
Furthermore, the boundary valu€z = €,1) is unity for any value of, i.e.,
u(e,n) = 1. (41)
Proof. By plugging Eg. (39) into the differential equation and using the orthogonalify @) we obtain

2 dig(r) ! 1 x
2k+1 dv /,1 S(w — e&)Lilt(n)ldt = eLk (e) ’ (42)
The boundary condition at = —e is obtained by the solution at= —e¢ in interval |,
3 du(—e) LyfEm)] = . (43)
=0
Thus,@;(—€) =0foralll =0,1,2,---. Using this boundary condition, we obtain
.1
o = 27e(x +€), (44)

if £ =0.If £ # 0, we have

oo = 220 [ ()= b (2) - 20 ()] =

€

where we used Eq. (14). The boundary value@f,n) atz = e is

ulem) = 5o+ b))~ Lo (1) =1 (46)
=1
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From lemma 3, we know that the mean value:0f, ) in this interval is given by
1
E[U(mvﬂ)] = %(1' + €), (47)
which istg(z). If z — 0, we confirm that
lirrb Elu(z,m)] = 4(0) = -.

Interval lll, z € (—e, 1]: Since there is né-function in this interval, using the boundary valuewdt,n) = 1,
the solution inz € (g, 1] is given byu(x) = 1. It is easy to show that i€ — 0, then we have

u(z,m) — u(z), oru®(z). (48)

Using lemma 3, we have the following corollary ffF1, 1].
Corollary 4. The expansion coefficienig(x) are given by

fofw) = 5+ 1), (a) = 3[Lara(e) — L (@), (@9)

and .
w0 =5~ 3 S (0) - Lia (0] Lala). (50)

I=1,0dd

Proof. From lemma 3, fore — 1, we have Eqgs. (49) and (50). Furthermore, by plugding 0 and equations in
Eq. (49) into Eqg. (28), we obtain

o0

1 1
u(@,0) = 5(z+1) + Z_QZ 5L (2) = Lica(0)]L(0). (51)
It is a simple exercise to show that Eq. (51) becomes
0) = L N L 0)—L 0)]L
u(z,0) = §fHde§[ 1+1(0) = Li—1(0)] L ().

Here note that the first coefficierity(x) = (1/2)(z + 1), is the same as the expectation valueof, £) in Eq. (8).
Remark: Equations (50) and (51) are equivalent. They may, however, become different if they are truncated with
the finite NV in their given forms. For Eq. (51), sincg;1(x) = L;—1(z) ata = £1if [ is even, we know that at
r = =1,
1 x=1

w0 = g ={ o 7L

which are the boundary values and they are determined regardless of how many terms are used in the series. For
Eqg. (50), sincei(z,0) = 1 atz = 1, andu(z,0) = 0 atz = —1, the following should be

1
> 3 1La41(0) = Lica(O)]La(2) = ¢ ;
1=1,0dd 3 r=-1

which is only true ifN — oo. Thus we use Eq. (51) for the computation in the following sections.
Figure 1 shows the expansion coefficientéx), Eq (49). The top figure showsg(z) for I = 0,--- ,9 and the
bottom figure forl = 10, - - - , 40.
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FIG. 1: Expansion coefficients;(x). Top: u;(x) for i = 0, - - ,9. Bottom: v;(x) for I = 10, - - - , 40.
Theorem 5.
uM (z) = u®(2) = u(z, £ =0).

Furthermoreuy (z, &) converges tau(z, &) até, = 0, i.e.,

i u(z, 0) — wy(,0) 0 = 0. (52)

Proof. From lemmas 1 and 2 and corollary 4, we know that all the coefficienis'ofz), u(? (x), andu(z, & = 0)
are the same.
Using the recurrence relatidm + 1)L, 1 (x) = (2n + 1)z L, (z) — nL,_1(z), we have

(7 +2)Ln12(0) = —(n + 1)L (0), (53)

which yields
(54)
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Then we leto, (z) be defined as

. 1 1 2k)! 2k +2)(2k +1 !
ok = 51L20(0) ~ Lansa(0] = (-1 s |1+ O~ i F )
Using the Stirling formulau! ~ v/2mn(n/e)™ and(2n)! ~ [v/47n(2n/e)?"], we have
2%
(2k)! . Ak (2£) 1
im ———= = lim : 5 = lim =0. (56)
k—oo 4 (k}') k—o00 4k |: ok (%)k:| e V4
Thus, the following series converges
d =,k (2R)
Z okt = Y (=1) T2 (57)
=0 k=0
and we have
u(z,0) — un (z,0)]s0 = Z op i1 Logy1(x Z boki1| — Ofor N — oo. (58)
k=N/2 k=N/2 -

From theorem 5, we know that the stochastic solutign &) matches the deterministic solution well, particularly
if the singularity is located at = 0.
Remark: Theorem 5 can be extended to the more general case that

du(x)
dz

=6(x—c¢), ze€l-1,1],

wherec is the real constant € [—1, 1]. Then solutions") (z; ¢) andu(? (z; ¢) are the same ag(z, &) for any&, = c.

This can be easily shown using the properties of the Legendre polynomials. Fift fofc) = Zl]io afz)Ll(x),
the coefficients are given by

20+1 !
a®=2*1 / Li(z)dz. (59)
2 C
By the Galerkin projection, we get similar results as lemma 2,
N l—-c 1
aft) = 5 ) = 3lLi-1(€) = Lisa (), (60)

for anyl > 0. To prove Egs. (59) and (60) are equal, we use the identity formula (14). Settind andx = cin
Eq. (14), respectively, we have

1
) [ @) = L (1) = Lia() =0, (61)

(2l + 1) /C Ll(a:) == Ll+1(0) - Llfl(c). (62)

-1
Subtracting Eq (62) from Eq. (61) yields the equation implying that Egs. (59) and (60) are equal. Also, the boundary

conditionzl o A(l)Ll( 1) = 0 is obtained by plugging Eg. (60) into this formula. The coefficients from the polyno-
mial chaos method for anyare obtained in as similar way as corollary 4 by just replacihgith c in Eq. (50). After

some simple algebraic calculations, we can show that the coefficients by the polynomial chaos method are equal to
those by the previous two methods.
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Now we consider the convergencewir, &) for any&. That is, we want to show

Using corollary 4 we have
(o) oo 1
lu(z, &) = un(z, E)lloo = || Y @@ Li(&)| =1 > 5 Lis(@) = L1 (2)) La(€)
I=N+1 IS I=N+1 o
1 (o]
<3 Z [Li1(2) = Li—1(@)| o (64)
I=N+1

where we usedlL;(&)| < 1. Here we do not provide the convergence analytically, but instead we show the numerical
result. DefineR; (n),

Ri(n) = |Lix1(z) — Li—a(2)] o
and the remainder

Neo

Ro(n,Noo) = Y |Lisi(2) = Lioa ()] -

l=n+1

For the numerical calculation d?;(n) and Rz(n, Ny ), We useN,, = 6000. Figure 2 shows the decay & (n)
(blue solid line) andR»(n) (black solid line) withrn in logarithmic scale. The figure shows that (n) decays with
a rate of aboutr n=*9%, The red line in the figure is a reference line which decays—*>. With this decay rate,
we know that the serie¥.~, |L;+1(z) — Li—1 ()|, will converge. Thus, the remaindé (n, N..) will decay as
n — oo andN,, — oo forn < N, i.e.,

lim Ry(n,Nw) =0.
N, Noo —00
The black solid line shows the decay B$(n, N, ) with N, = 6000. The figure implies that due to the decay prop-
erty of R1(n), the remaindeR,(n, co) will also decay to zero as — oo, but the decay rate is only algebraic. That
is, we know that.y (x, &) converges ta(z, &), but convergence is slow because of the existence of the discontinuity
atx = &.

2.5

(3]
T

—
(9]
T

1k Remainder (N__= 6000) il

o
(9]
T

LOglOILm—](X) -L ol @l .

(=]

=
(9]

LOgloanH(X) -L n-1 (X)lmax

Slope = -4.95

'
—_

—
W
T

'
(3]

Logmn

FIG. 2: Decay ofR;(n) and Rz(n, N, ) with N, = 6000. The red solid line is the reference line which decays as
n74.95.
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3. GIBBS PHENOMENON

The solutions obtained in the previous section yield the Gibbs phenomenon. The Gibbs phenomenon is commonly
found in high-order approximations of discontinuous functions with the spectral method [19, 20]. The exact solution
of Eq. (5) is the Heaviside function witH (0) = 1 andlim,_,,- H(z) = 0. As we already saw, all solutions obtained
in the previous section have the expectation value/@fatz = 0. Thus all solutions converge #d(x) at every point
x exceptr = 0. This appears as the Gibbs oscillations in the partial sum of each solutiom reé@r

Figure 3 shows the partial sum solutionwfz, & = 0) (left) andu(x, &) (right) for N = 40. The left figure
shows the solution whefs = 0. As shown in the figure, the solution is oscillatory near the discontinuity 0. The
right figure shows the collection of solutions for evérandx. As shown in the figurey(z, &) are oscillatory near
x = &. Figure 4 shows the variance and the mean(of, £). The top figure shows the computed variance @f, &)
with 501 points ofz and§ for N = 10 (blue solid line), N = 20 (green),N = 40 (purple), and the theoretical
variance ofu(z, &), (1 — 2%)/4 (red). As the figure shows, the variance approaches the exact variaNcmagases,
but the convergence is slow. The slow convergence is due to the fact that the variance is computed using every term
in the series of the solution. As the series converges slowly, the variance also converges slowly. The bottom figure
shows the error between the computed mean(of ) and the exact meai + x),/2 in logarithmic scale using001
uniform points forN = 4,6, 10. For the numerical integration, we used the Simpson’s rule. The figure shows that the
pointwise errors of the mean value are close to machine accuracy for the small v&udbis is because the first
mode is the mean and the rest of the terms are canceled ou. iAsreases, the pointwise errors increase, which
results from the incomplete numerical cancellations of high modes due to round-off errors.

4. HIGH-ORDER MOMENTS OF U (X, §)

With the uniform distribution, it is easy to show that the variance is given by

Var|u Z o + 1 (65)

where one should note that the indexins from1. In general, all the terms af;(x) are involved for the computation
of the variance, as shown in the above equation and Fig. 4. It is, however, interesting to observe that the variance in

our case is simply given by the second modé&gf:),

§>

Varu(z, £)] = — &) _ 3(1 _ 2?), (66)

1.5

u(x,0)

0.5+

OmeNV\/\/\// 1 -0.5-"”

100

o5
-1 -08-06-04-02 0 02 04 06 08 1 o 0
X £

FIG. 3: Left: u(x, &) for & = 0. Right: u(z, &). For these figuresy = 40 is used.
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That is, as the mean af(z, £), the variance can be determined exactly ofage:) is found. This implies that the slow
convergence of the variance found in Fig. 4 can be resolved as the variance is obtained instantly. To understand this
interesting aspect, we need to show the following:

)
i (v) 1 )
2 g1 =20 ©7)
=1
whereu;(x) = (1/2)[Li+1(z) — Li—1(x)]. To prove Eq. (67), first we plug Eg. (14) into the left-hand side (LHS) of
Eq. (67). Then the LHS becomes

x

) Ll(u)dur-

LHS = %i(mﬂ) U
=1
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For the proof we use the well-known property that the Legendre polynomials are complete, { 1i8] +1)/2

L (z)};o are complete and orthonormal [21]. The completeness condition yields
=0

[ ([ ]

X A+1[ [ 2
r+1= ;[/ Ll(u)du].
-1

=0

Thus,

Using Lo(x) = 1 we obtain [21]

oo

1—2® =) (20+1) Uj Ll(x)dur.

=1
This completes the proof. This special result is due to the following relation:

Eu"(z,&)] = Flu(z,&)], forany n=0,1,---. (68)
Since the exact solution H(z — &), it is simple to show that
Elu"(z,&)] = E[H"(2,&)] = E[H(z,8)] = E(u).

The fact that the mean of any powerw(z, &) is the same as the meanw(fz, &) yields the following property. Let
Elu(z,&)] = wandv = —a. Then forn =0, 1,--- , we have

El(u—a)"] =v"(14+v) —v(l+v)"™ (69)
It is easy to show Eg. (69),

i(Z)“k(‘ﬂ) ]: +Z( ) —a)" k= (—a)" + (@) n1<2)(—a)nk

k=0

=" — UZ (Z) ()" % =" (1+v) —v(l +v)", (70)

El(u—1)"] = E

where we used Eq. (68) and= —u. Equation (69) yields interesting results about the high-order momemts-afr
example,

El(u—a)"] = (—1)"—12(nu_”ﬁ, n=23. 71)

The second moment is the variance and the third moment is related to the skewness. Thus, we know that the first three
moments (the mean, variance, and skewness) are obtained exactly by the first three mgdedaf our case.

Figure 5 shows[(u — @)™] with differentn = 1,--- ,50. The left figure show[(v — u)"] forn =1,---,20
and the right fom = 21,--- ,50. If n = 1, E[(u — @)"] = 0. As n increases, the maximum value Bf(u — )"
decreases in the figures. Note the different scale in the left and right figures.

5. TIME-DEPENDENT LINEAR ADVECTION EQUATION WITH UNCERTAINTY

We consider the time-dependent problem with a singular source term

u+uy =8(x), wu:[-1,1]xRT =R, t>0
u(@,0) = g(z), t=0
u(—=1,t) =h(t) t>0. (72)
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If the boundary condition is homogeneous, i#+1,t) = 0, the solutionu(x,t) goes to the steady-state solution
which is the Heaviside functio{ (x). We consider the case that the location of the singular source has an uncertainty
& as in the previous sections, that is,

up + up = 8(x — &), (73)
whereu = u(z, t, ). We assume that € (—1, 1) with the uniform PDF and
u(z,t, &) = iﬁl (x,t) Ly (&). (74)
1=0
By plugging Eqg. (74) and using the orthogonality condition of the Legendre polynomials, we obtain
st o)+ e )] = L) 79)
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If [ =0, we have

N 0 . 1
Euo(%t) + a*xuo(ﬂ%t) =3 (76)
Then the solution of Eq. (76) is given by
Go(z,t) = Go(z0,t = 0) + x+C 77)

2

where(' is the integration constant ang)y = x — ¢. To determine the integration constatit we use the given
boundary and initial conditions. From the boundary conditi¢r 1,¢, &) = h(t), we have

W(—1,8) = (204 Dh()s :{ ’L(()t) 5;8 . (78)
Similarly, using the given initial condition
iﬂl (2,0) Ly (&) = g(x),
=0
we obtain
W@ 0) = (2 +1)g(@)s0 = { olz) 4 D 0 (79)
Using Egs. (78) and (79), we obtain
to(x,t) = glx—1t)+ %x +C=g(x—1t)+ %x + h(t) + 5~ g(—1—1). (80)
If I # 0, by using the orthogonality condition we obtain
(e, 1) = iylzo,t = 0) + QZT“ Lily)dy = 5 (L (&)~ Lia ()] (81)

—1

where we used Egs. (18) and (79). Thus, the general solution of the stochastic equation (73) is given by

u(w,t,8) = glz — ) — g(~1 1) + 5 (2 + 1) + At Zl Lo (2) — Lis ()] L(E). (82)

[N)

If g(z) = 0 = h(t), then we obtain

[Lig1(z) — Ly (2)] Li(E).

[\D\H

u(x,t, &) = =(x+1) Z

This is the Legendre expansion Bf(z), and we know that.(z,t) — H(z) ast — co.
To consider the numerical approximation of the solution, we use the Legendre polynomials bathda,

u(w, t, &) =Y (e, ) Li(8) =Y [Z 0 (t) Lie(x) | La(E). (83)
=0 =0 Lk=0
We seek the truncated sum of Eq. (83) for the numerical solution
N M
uny(z,t, &) = l @i(t)Lk(x)] Li(&). (84)
=0 Lk=0
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For simplicity, we assume th&f = M. Multiplying each side of Eq. (75) by, (z), I’ = 0,--- , N and using the
integration by parts, we obtain

9 1 1
5 | Wlv(@de +a(1,t) —a(=11)Ly(-1) — / Ly (z)de = sy, (85)
—1 —1

where we usd.;; (1) = 1,VI’. We then plug the following relation into Eq. (85),

For the given, using the boundary condition and the properties of the Legendre polynomials, we obtain

2z'+1 dt Z £)810(— ka/ Ly (z) L, (z)dx = &y (86)

Define the column vector®' andgl, whoseith elements aré! and(—1)¢, and define the matril}, whoseith column
has the elemerdt; for: = 0,--- , N. Also, define the matriceA, B, andC, whosa’j elements arel;; = (2 +1)/2,

B;; = [2/(2i+1)]6;5, andC;; = f Li(z)L;(z)dx, fori,j = 0,- N, respectively. Then for giveh Eq. (86)
becomes
dit_ B 'C - A) %! — h(t)5,0B b, + B~ 'bl 87
E_( —A) 7" — h(t)dio 1+ 2 (87)

Equation (87) is solved numerically using the initial condition

0 140

0 2k +1 (88)

5 [1 g(x)Lg(x)dx 1=0

For the numerical experiment, we use the following initial and boundary conditions:

?TN
|

u(z,t =0,&) =sin(nz), ulx=-1,t,&) =sin[r(—1—1)].

With these conditions, the meditz, t) and the variance(x, t) of the exact solutiom(x, ¢, &) are given by

F,t) = sin[r(z — )] + %(x 1), glat) = 3(1 _a?). (89)

The variance is the same as the variance of Eq. (9), which is because the homogeneous solution is independent of
the random variablé&. For the time integration we use the third-order Runge-Kutta total variation diminishing (TVD)
scheme [22]. The mean and the varianceae computed by

N

N
mean= Y _v)(t)Li(x), variance= Z
=

k=0

3o

Figure 6 shows the solution fdr = 0 (left figure) and the variance (right) at= 10. As shown in the right figure,
convergence of variance is slow due to the Gibbs phenomenon.

2l+1
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with N = 41.

6. DIRECT PROJECTION COLLOCATION METHODS

In the previous sections, we used the Galerkin approach to obtain the solution of the differential equations with the
random variablé€,. The Galerkin approach yields the Gibbs phenomenon, as shown in the previous sections. In this
section, we solve the same equations using the collocation method based on the direct projection approach for the
singular source term [23]. The direct projection approach uses the direct derivative of the Heaviside function for the
singular source term on the collocation points. The direct collocation method was applied to several applications [23—
25]. The main idea of the direct projection approach is to project the Heaviside furf€tiohto the collocation

points using the spectral derivative matfixy, that is,

5]\](.%') — DNHN(.T),

whereb y (z) is the spectral approximation of tlefunction on the collocation points withy the derivative ma-
trix and Hy () the Heaviside function on the collocation points. Several spectral derivative matrices related to the
orthogonal polynomials can be found in [19].

6.1 A Simple First-Order Differential Equation

Consider the following differential equation with the random variahle

du(z, &)
dx

Let Uy be the approximation of on NV + 1 collocation points foig, {&;},. The collocation method yields the
approximationly (z, &) in the Legendre polynomials as in the previous sections,

=5~ £).

N

=0

Here we assume that we also séék(z, &) on the collocation points far, {z;}},. That is, the spectral method is
applied for bothz and§ directions, and the solutiofiy (x, &) is defined on the two-dimensional grid. By plugging
Un (z, &) into the differential equation, we obtain

DMUN(.I,E,) 25(37—5,), (91)
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where D), is the spectral derivative matrix for the variabteon M + 1 collocation points associated with some
orthogonal polynomials such as Chebyshev or Legendre polynomials. For the singular source term in the right-hand
side (RHS) of the above equation, the direct projection method uses

d(x — &) — Dy Hy(z - §),
whereH , is the Heaviside function on the collocation points which has the jump=at. Then Eq. (91) becomes
DyUn(2,8) = DarHpp(z — ). (92)
To solve the differential equation, we first use the boundary condition, which is
Un(-1,8) =0, V&€ {&}, (93)
From Egs. (92) and (93) we obtain

Dy (Un(z,&) — Hy(z — £)) =0, VE€ {&}Y,,

where D), is the submatrix ofD,;, which is obtained by subtracting the boundary column and row ffoyn The
RHS0 denotes a null vector, aridy (z, &) in the LHS is a solution vector for a certain Since D), is nonsingular
[19], we obtain

Unm(z,&) = Hy(x — &), (94)

which is the same as the exact solution, and we know that such solutBiblis-freeon the collocation points.
Remark: We note that the interpolation based on the solution at the collocation points yields the Gibbs oscillations,
but the solution is Gibbs-free on the collocation points.

6.2 A Simple Time-Dependent Problem

Now we consider the time-dependent problem with the collocation method
U+ U, =D,H(x—§), (95)

whereU = U(z, t, &) andD,, denotes the derivative operator with respect t&/ is defined in the same way,

N
Un(z,t,£) =Y iiy(a,t)Ly(£). (96)
=0

For the steady-state problem, using the following boundary condition,
U(-1,t,8) =0, t>0, (97)
and we have the given differential equation which becomés-asx,
U, = D, H(zx —&). (98)

This steady-state solution beconiéér, ¢, &) — H(xz — &), as shown in the previous section.

For the numerical experiment we use the Chebyshev polynomials dod the Legendre polynomials fér As
in the previous section, we use the third-order Runge-Kutta TVD scheme for the time integration [22]. For the initial
and boundary conditions we use the following:

U° = [sin(mag),sin(rzy), - ,sin(ran_1),sin(rza)]’
U™(xzg) = sin[r(zg—1t")], VYn=1,2,---, (99)
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wherez;,i = 0,--- , M are the Chebyshev Gauss—Lobatto collocation poifjtss — cos(wi/M),i = 0,--- , M.
With these initial and boundary conditions, the exact solutipn &) is given by

u(z,t,&) =sin[r(x — )] + H(x — &), (100)

where the first term is the homogeneous solution and the second term is the particular solution due to the singular
source term.

Figure 7 shows the collocation solution fofz, £). Figure 7a shows the solution whén= 0, and the middle
shows the collection of solutions with variods Figure 7a shows that the solution is not affected by the Gibbs
phenomenon without any oscillations on the collocation points. Figure 7b shows that along thedifethe jump
of each solution is sharp, without any Gibbs oscillations. For these figures, we useV + 1 andN = 81. Figure 7c
shows the variance withv = 41 and M = 21. The variance from the numerical solution is the blue line with the
O symbol. As shown in the figure, the variance is more accurately computed compared to the result in Fig. 6. The
numerical results, however, show that the degree of accuracy is similar to that with the numerical simulation with the
Galerkin approach, although the Gibbs oscillations are not seen on the collocation points. This result is somewhat
different from what the authors expected, partly because the collocation approach has the ambiguity in defining the

u(x,&,t =10)

u(x,t =10, €= 0)

02— -

Variance
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| | |
-1 -0.5 0 05 1
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FIG. 7: (a) The solution at, = 0. (b) Polynomial chaos solutions for evefy The total number of grid points for

xis N = 81. (c) The computed variance (blue line with square) and the exact variance (red line)fwitt21 and
N =41.
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location of theb-function and the Heaviside function. If théefunction is located at a certain collocation point, the
error does not decay at that point because the actual location dffthection with our collocation method exists off
the collocation points. This issue will be further investigated in our future work.

7. CONCLUSION

In this paper we considered simple differential equations with a singular source term. For the singular source term, we
used the Diraé-function. Due to the uncertainty of the location of the singular source term, we introduced a random
variable and used the generalized polynomial chaos method to find the general solution of the differential equation
under the uncertainty. For simplicity, we used the assumption that the uncertainty is associated with the uniform
distribution. Based on this assumption, we derived the general solution of the differential equation in the Legendre
polynomials using the Galerkin method, as well as the expectation value and variance of the solution. For this partic-
ular case, we show that the second- and third-order moments as well as the mean can be computed exactly using the
first three expansion coefficients. The same technique was applied to the simple time-dependent problem. We showed
that the Gibbs phenomenon appears in the polynomial chaos solution and consequently convergence is slow. As a
preliminary work dealing with the Gibbs phenomenon in the solution, we considered the direct collocation method
for the polynomial chaos solution. We showed that the direct collocation method can avoid the Gibbs phenomenon
for the simple differential equations considered in this paper. Although the Gibbs oscillations are much reduced, the
convergence of variance is about the same order as the Galerkin approach, which will be further investigated in our
future work. The assumption of uniform distribution yields relatively easy analysis. In our future work we will con-
sider more realistic cases with different distributions for more general types of differential equations with the singular
source term. Thus, our future work will include the polynomial chaos method for more types of uncertainty variables
associated with the singular source term and will further investigate the collocation method for the polynomial chaos
solution and the Gibbs phenomenon with the singular source term.
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