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The ensemble Kalman filter (EnKF) is a technique for dynamic state estimation. EnKF approximates the standard
extended Kalman filter (EKF) by creating an ensemble of model states whose mean and empirical covariance are then
used within the EKF formulas. The technique has a number of advantages for large-scale, nonlinear problems. First,
large-scale covariance matrices required within EKF are replaced by low-rank and low-storage approximations, making
implementation of EnKF more efficient. Moreover, for a nonlinear state space model, implementation of EKF requires
the associated tangent linear and adjoint codes, while implementation of EnKF does not. However, for EnKF to be
effective, the choice of the ensemble members is extremely important. In this paper, we show how to use the conjugate
gradient (CG) method, and the recently introduced CG sampler, to create the ensemble members at each filtering step.
This requires the use of a variational formulation of EKF. The effectiveness of the method is demonstrated on both a
large-scale linear, and a small-scale, nonlinear, chaotic problem. In our examples, the CG-EnKF performs better than
the standard EnKF, especially when the ensemble size is small.

KEY WORDS: ensemble Kalman filter, data assimilation, conjugate gradient iteration, conjugate gradient
sampler

1. INTRODUCTION

The Kalman filter (KF), first introduced in [1], is the extension of Bayesian minimum variance estimation to problems
in which the unknown to be estimated, which we call the state, varies according to some (approximately) known
model, and is indirectly and sequentially observed in time.

KF assumes linear state and observation models, and its extension to nonlinear cases is known as the extended
Kalman filter (EKF) [2]. The outputs from KF and EKF at a particular time step are estimates of the state and its
covariance matrix. At the next time step, as new data come in, these estimates are then updated using the Kalman, or
some equivalent, formulas.

Both KF and EKF have been successfully used in a number of settings, e.g., autonomous and assisted navigation.
However, for problems in which the dimension of the state space is prohibitively large, such as arising in weather
and ocean forecasting, storing and operating by the state covariance matrix, which is dense, is computationally pro-
hibitive.
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To overcome this issue, a number of approximations have been developed that replace the state-space covariance
matrices appearing within the filter by low-rank or low-storage approximations. These include approaches in which
the state space is projected onto a smaller subspace [3–6]. However, since the chosen subspace is typically fixed in
time, the dynamics of the system, which changes in time, is often not correctly captured [7].

A related approach makes use of iterative methods both for state estimation and covariance approximation. For
example, in [8–10], the limited memory BroydenFletcherGoldfarbShanno (BFGS) (LBFGS) method is used for state
estimation, as well as to build low-storage (full rank) covariance approximations, in both standard and variational
[Bayesian maximuma posteriori(MAP)] formulations of KF and EKF. In [11], the same approach is taken, with the
conjugate gradient iteration used instead of LBFGS, yielding low-rank covariance approximations. Similar ideas are
explored in [12]; however, the covariance approximations are derived in a more complicated fashion. These approaches
have the benefit that the associated covariance approximations change with each step in the filter based on local
information. However, for nonlinear problems, the methods require tangent linear and adjoint codes for computing
the Jacobian of the model and its adjoint at an arbitrary state. Such software is model dependent and can be quite
tedious to write for complex models.

An approach that does not require such linearization software is the so-called ensemble Kalman filter (EnKF). In
EnKF, a random sample of states, called an ensemble, is computed at each time step, and the state and covariance
estimates are taken to be the sample mean and covariance of the ensemble. EnKF was first proposed in [13], but
several variants now exist [14]. Not surprisingly, the technique has its own set of problems, e.g., sampling errors due
to random perturbations of model state and observations, and from ensemble in-breeding; see, e.g., [15–17]. Moreover,
ensemble filters yield low-rank approximate covariance matrices, with column space spanned by the mean-subtracted
ensemble members. To make the approximations full-rank, an additional matrix must be added, which is known in the
data assimilation literature as “covariance inflation” [18, 19].

In a recent paper [20], an ensemble version of the variational approach set forth in [9] is presented. As in [9],
LBFGS is used to minimize a quadratic function—the negative log of the Bayesian posterior density function—whose
minimizer and inverse Hessian are the Kalman filter state estimate and covariance, respectively. A new ensemble is
generated directly from the covariance approximation without having to store dense matrices and perform matrix
decompositions. The resulting forecast ensemble is then used to build an approximate forecast covariance without
the use of tangent linear and adjoint codes. In contrast with standard EnKF approaches, random perturbations of the
model state and observations are not used in this method, and hence some of the problems related to existing ensemble
methods do not arise.

In this paper, we follow the general approach of [20], but instead use the conjugate gradient (CG) iteration for
quadratic minimization and the CG sampler of [21] for ensemble calculation. The resulting method has several advan-
tages over the LBFGS version. Perhaps most importantly, for the examples we consider, it results in a more accurate
and faster converging filter. Also, it is more intuitive and much simpler to implement, requiring the addition of only
a single inexpensive line of code within CG. And finally, a rigorous supporting theory for the accuracy of the CG
ensembles was developed in the recent work of [21]. We call the proposed method the conjugate gradient ensemble
Kalman filter (CG-EnKF).

The paper is organized as follows. In Section 2, we recall the basics of Kalman filtering and ensemble methods.
We introduce the CG-EnKF algorithm and the relevant CG theory in Section 3 and demonstrate the method with
numerical examples in Section 4. We end with conclusions in Section 5.

2. KALMAN FILTERING METHODS

In this paper, we consider the following coupled system of discrete, nonlinear, stochastic difference equations

xk = M(xk−1) + ε
p
k, (1)

yk = Kkxk + εo
k. (2)

In the first equation,xk denotes then× 1 state vector of the system at timek,M is the (possibly) nonlinear evolution
operator, andεp

k is an × 1 random vector representing the model error and is assumed to characterize errors in the
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model and in the corresponding numerical approximations. In the second equation,yk denotes them × 1 observed
data vector,Kk is them×n linear observation operator, andεo

k is anm×1 random vector representing the observation
error. The error terms are assumed to be independent and normally distributed, with zero mean and with covariance
matricesCεp

k
andCεo

k
, respectively. In this paper, we do not consider the (often cumbersome) estimation of these

matrices, and assume that they are given.
The task is to estimate the statexk and its error covarianceCk at time pointk givenyk, Kk, Cεo

k
, the function

M(x), Cεp
k

and estimatesxest
k−1 andCest

k−1 of the state and covariance at time pointk − 1.
The extended Kalman filter (EKF) is the standard method for solving such problems [2]. The formulation of EKF

requires that we linearize the nonlinear functionM atxk for eachk. In particular, we define

Mk = ∂M(xest
k−1)/∂x, (3)

where∂/∂x denotes the Jacobian computation with respect tox. EKF then has the following form.

Algorithm 1 (EKF). Select initial guessxest
0 and covarianceCest

0 , and setk = 1.

1. Compute the evolution model estimate and covariance:

a. Computexp
k = M(xest

k−1);

b. DefineMk = ∂M(xest
k−1)/∂x andCp

k = MkCest
k−1M

T
k + Cεp

k
.

2. Compute Kalman filter estimate and covariance:

a. Define the Kalman gain matrixGk = Cp
kK

T
k (KkC

p
kK

T
k + Cεo

k
)−1;

b. Compute the Kalman filter estimatexest
k = xp

k + Gk(yk −Kkx
p
k);

c. Define the estimate covarianceCest
k = Cp

k −GkKkC
p
k.

3. Updatek := k + 1 and return to stepi.

Note that in the linear caseM(xk−1) = Mkxk−1, and EKF reduces to the classical linear Kalman filter [1].
For large-scale, nonlinear problems, such as arising in weather and sea forecasting, the linearization ofM required

within EKF can be problematic. For example, numerical approximations may need to be used, yielding inaccuracies,
or the linearization might be either too computationally burdensome or complicated. Storage of dense covariance
matrices of sizen× n, wheren is the size of the state space, can also be problematic.

An approximation of EKF that has reduced storage requirements and does not involve linearization ofM is the
ensemble Kalman filter. In EnKF, a representative ensemble is sampled at each step and is integrated forward by the
modelM. The resulting ensemble is then used to create a low-rank (and hence low-storage) approximation of the
model covarianceCp

k.

Algorithm 2 (EnKF). Sample initial ensemblexest
0,i for i = 1, . . . , N fromN(xest

0 ,Cest
0 ), and setk = 1.

1. Integrate the ensemble forward in time and then compute the evolution model estimate and covariance:

a. Sampleεp
k,i ∼ N(0,Cεp

k
), i = 1, . . . , N , then define

xp
k,i = M(xest

k−1,i) + ε
p
k,i;

b. Setxp
k = M(xest

k−1), and estimate the model covariance using

Cp
k = 1/N

∑N
i=1(x

p
k,i − xp

k)(xp
k,i − xp

k)T .

2. Compute a new ensemble using the Kalman filter formulas:

a. Define the Kalman gain matrixGk = Cp
kK

T
k (KkC

p
kK

T
k + Cεo

k
)−1;
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b. Sampleεo
k,i ∼ N(0,Cεo

k
) for i = 1, . . . , N , then define new ensemble membersxest

k,i = xp
k,i + Gk(yk −

Kkx
p
k,i + εo

k,i);

c. Compute the state and covariance estimates as the ensemble meanxest
k = 1/N

∑N
i=1 xest

k,i and empirical

covarianceCest
k = 1/(N − 1)

∑N
i=1(x

est
k,i − xest

k )(xest
k,i − xest

k )T .

3. Updatek := k + 1 and return to stepi.

EnKF computations can be carried out efficiently so that the covariances are kept in the low-rank “ensemble
form”, without explicitly computing the covarianceCp

k or the Kalman gain matrixGk [14]. However, these low-rank
approximations typically require the use of a form of regularization known as “covariance inflation” [18, 19]. Another
issue with EnKF is that unless the ensemble sizeN is sufficiently large, the estimator defined by the ensemble mean in
stepii .3 can be inaccurate and the method may perform poorly. Finally, EnKF also suffers from inaccuracies brought
on by the random perturbation of model states and observations; see stepsi.1 andii .2 of the algorithm.

3. THE CG ENSEMBLE KALMAN FILTER

The Kalman filter estimatexest
k and its covarianceCest

k , described in stepii of Algorithm 1, can be written in Bayesian
MAP form, as the minimizer and inverse Hessian of the quadratic function

`(x|yk) =
1
2
(yk−Kkx)TC−1

εo
k
(yk−Kkx)+

1
2
(x−xp

k)T(Cp
k)−1(x−xp

k), (4)

resulting in an equivalent variational (i.e., optimization-based) formulation of the Kalman filter. Note that (4) is the
negative log of the posterior density function with likelihood defined by the observation model (2) and defined prior
by stepi of Algorithm 1, i.e., byN(xp

k,Cp
k). Also, using (4) requires that multiplication byC−1

εo
k

is efficient.
An alternative approach to EnKF is to reformulate stepii in Algorithm 2 using (4), so that instead an iterative

method is used to estimate both the minimizer and inverse Hessian,∇2`(x|yk)−1, of (4). TheN new ensemble
members are then sampled fromN(xest

k ,Cest
k ), wherexest

k andCest
k are the estimates of the minimizer and inverse

Hessian computed by the method.
To efficiently implement the variational approach, one must overcome two computational bottlenecks. First, one

needs to make sure that the evaluation of the quadratic expression is efficient and that no large dense matrices are
stored in memory. Especially, an efficient way to multiply by(Cp

k)−1 is needed. Second, an efficient way to produce
samples fromN(xest

k ,Cest
k ) is required. Usually, sampling from a Gaussian is done via the Cholesky decomposition

of the dense covariance matrix, which is prohibitively expensive in high-dimensional cases, where one cannot even
store dense covariance matrices.

In [20], low-storage covariance approximations are used to overcome the above issues, computed using the limited
memory BFGS (LBFGS) [22] optimization algorithm. As is well-known, LBFGS yields an approximate minimizer
and uses iteration history to construct an approximate inverse Hessian of (4). As shown in [20], random samples can
also be produced efficiently from the LBFGS covariance (inverse Hessian) approximations.

CG iteration history can also be used to create a low-rank approximation of the inverse Hessian. Moreover, recent
results in [21] show how samples from the Gaussian with this approximate covariance can be easily generated from
within CG with almost no additional computational cost, and in such a way that the only additional requirement is to
store theN samples (ensemble members), each of sizen× 1.

Computationally, the CG implementation is slightly more efficient than the LBFGS implementation. When LBFGS
is used, some additional storage besidesN samples is required for the LBFGS covariance approximation, and the gen-
eration of the ensemble members requires an additional computation after the LBFGS iteration has stopped; see [20]
for details.

Finally, the theory for the accuracy of the CG samples is well-developed (Section 3.1.1), whereas, to our knowl-
edge, such an analysis does not yet exist for LBFGS inverse-Hessian approximation.

The CG ensemble Kalman filter has the following form.
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Algorithm 3 (CG-EnKF). Sample initial ensemblexest
0,i for i = 1, . . . , N fromN(xest

0 ,Cest
0 ), and setk = 1.

1. Integrate the ensemble forward in time and estimate its covariance:

a. Setxp
k = M(xest

k−1) andxp
k,i = M(xest

k−1,i) for i = 1, . . . , N ;

b. Estimate the model covariance using
Cp

k = 1/N
∑N

i=1(x
p
k,i − xp

k)(xp
k,i − xp

k)T + Cεp
k
.

2. Compute a new ensemble using the CG sampler:

a. Use CG to estimate the minimizerxest
k of (4), as well as to compute the new ensemble membersxest

k,i for
i = 1, . . . , N fromN(xest

k ,Cest
k ), whereCest

k is the approximation of∇2`(x|yk)−1 generated by CG.

3. Updatek := k + 1 and return to stepi.

Applying CG in stepii .1 requires that efficient multiplication by(Cp
k)−1 is possible. For this, define

Xk = [(xp
k,1 − xp

k), (xp
k,2 − xp

k), . . . , (xp
k,N − xp

k)]/
√

N.

ThenCp
k = XkXT

k + Cεp
k
, and the matrix inversion lemma can be used as in [20]:

(Cp
k)−1 = (XkXT

k + Cεp
k
)−1 = C−1

εp
k
−C−1

εp
k
Xk(I + XT

k C−1
εp

k
Xk)−1XT

k C−1
εp

k
. (5)

Note thatI+XT
k C−1

εp
k
Xk is anN ×N matrix. Thus, assuming thatN is not too large, and that multiplication byC−1

εp
k

is efficient, multiplication by (5) will also be efficient. In our examples, we assume thatCεp
k

is a diagonal matrix,
which makes the inversion and multiplication with a vector easy.

We observe that in contrast to EnKF and many of its variants, the model error term is included in the cost function
`(x|yk) directly, and the optimization is carried out in the full state space. Since a full-rank model error covariance
is used, the technique of covariance inflation [18, 19] is not needed. Naturally, the trouble of tuning the model error
covariance still remains, but this quantity has a clear statistical interpretation, unlike the ratherad hoccovariance
inflation parameters. Many existing ensemble methods cannot incorporate model error directly, and this is one of the
strengths of the variational approach.

We will now introduce the CG sampler, used in stepii .1, for computing both the estimator and ensemble members.

3.1 The CG Sampler

First, we rewritè (x|yk) defined in step (4) as

`(x|yk) ' 1
2
xT Ax− xT b, (6)

whereA = KT
k (Cεo

k
)−1Kk + (Cp

k)−1 andb = KT
k (Cεo

k
)−1yk + (Cp

k)−1xp
k.

Recent work of [21] shows that while finding the minimizer of the quadratic`, the CG algorithm can also be used
to inexpensively generate approximate sampleswi from N(0,A−1). The new ensemble (in stepii .1 of Algorithm 3)
is then defined

xest
k,i = xest

k + wi, (7)

wherexest
k is the approximate minimizer of̀(x|yk) computed by CG.

We call this modified CG algorithm the CG sampler, as in [21]. It is given as follows.

Algorithm 4 (CG sampler). GivenA, b, andx0, let r0 = b −Ax0, p0 = r0, d0 = pT
0 Ap0, j = 1, andwi,0 = 0

for i = 1, . . . , N . Specify some stopping toleranceε and iterate:
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1. γj−1 = (rT
j−1rj−1)/(dj−1);

2. xj = xj−1 + γj−1pj−1;

3. wi,j = wi,j−1 + (zi/
√

dj−1)pj−1, zi ∼ N(0, 1), for i = 1, . . . , N ;

4. rj = b−Axj = rj−1 − γj−1Apj−1;

5. βj = −(rT
j rj)/(rT

j−1rj−1);

6. pj = rj − βjpj−1 anddj = pT
j Apj ;

7. If ||rj || < ε, setwi = wi,j for i = 1, . . . , N . Else setj := j + 1 and go to stepi.

The cost of implementing CG is dominated by the matrix-vector multiply at a cost of about2n2 flops in each CG
iteration [23]. Thus, as long as the number of CG iterationsj is small relative ton, then CG-EnKF will be cheaper to
implement than EnKF.

Remark 5. At iterationk of CG-EnKF, after the CG sampler iterations have stopped, we definexest
k to be the most

recent CG iteratexj , andwi to be the most recent CG samplewi,j as in stepvii . The new ensemble is then given by
Eq. (7).

3.1.1 Analysis of the CG Sampler Approximations

In this section, we provide the relevant theory from [21] regarding how well the mean and covariance matrix of the
CG samples{wi} approximate the mean and covariance ofN(0,A−1), the target Gaussian of interest.

In exact arithmetic, CG is guaranteed to find a solution to then×n linear systemAx = b [or, equivalently, to find
the minimizer of the quadratic in Eq. (6)] after a finite number of iterations, and the CG samples will be distributed as
N(0,A−1) when the eigenvalues ofA are distinct andn CG iterations are computed. The reason for this efficiency
is that the CG search directions{pl} areA-conjugate,pT

l Apm = 0 (see, e.g., [24]).
In finite precision, however, the CG search directions lose conjugacy at some iteration less thann. Nevertheless,

CG still finds a solution toAx = b as long as “local conjugacy” of the search directions is maintained [25]. In
fact, when the eigenvalues ofA are clustered intoj groups, CG finds the approximate solution afterj iterations in a
j-dimensionalKrylov space,

Kj(A, r0) := span(r0,Ar0,A2r0, ...,Aj−1r0).

The loss of conjugacy of the search directions is detrimental to the CG sampler (just as it is for iterative eigen-
solvers), and, without corrective measures, prohibits sampling from the full Gaussian of interest,N(0,A−1). Nonethe-
less, the resulting sampleswi have a realized covariance which is the bestj-rank approximation toA−1 (with respect
to the 2-norm) in the samej-dimensional Krylov space searched by the CG linear solver.

In order to make the previous discussion more explicit, we establish some notation. If we letPj be then × j

matrix with{pl}j−1
l=0 as columns, andPB be then× (n− j) matrix with{pl}n−1

l=j as columns, then, by conjugacy,

Dn =
(

Dj 0
0 DB

)
=

(
PT

j APj 0
0 PT

BAPB

)
= PT

nAPn

is an invertible diagonal matrix with entries[Dn]ll = pT
l Apl. Thus

A−1 = PnD−1
n PT

n = PjD−1
j PT

j + PBD−1
B PT

B . (8)

Now, a CG sample can be written aswi = wi,j = PjD
−1/2
j z, wherez ∼ N (0, Ij) (since we initialize the

sampler withwi,j=0 = 0). Thus, when the CG sampler terminates afterj < n iterations,

wi ∼ N(0,PjD−1
j PT

j ). (9)
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Since the covariance matrixPjD−1
j PT

j is singular, the distribution ofwi is called anintrinsic Gaussianin [26].
In exact arithmetic, Eqs. (8) and (9) show that at iterationj = n, the CG sampler produces the sample

wi ∼ N(0,A−1)

as long asA hasn distinct eigenvalues. When the eigenvalues are not distinct, then CG terminates at iterationj < n
[25]. In finite precision, the CG search directions{pj} lose conjugacy at some iterationj < n. The rest of this section
is devoted to answering the following question: How good is the distribution approximationN(0,PjD−1

j PT
j ) to

N(0,A−1) after conjugacy in the CG search directions is lost?
It is well known that at thejth iteration, CG can be used to inexpensively estimatej of the eigenvalues ofA,

the extreme ones and the well-separated ones [25, 27–29]. The eigenvalue estimates are known asRitz values, and
we will denote them byθj

1 < ... < θ
j
j . The corresponding eigenvectors can also be estimated by CG, although at a

non-negligible cost, usingRitz vectors. In exact arithmetic, by the time that CG converges to a solution ofAx = b
with residualrj = 0, the Ritz values have already converged to thej extreme and well-separated eigenvalues ofA,
and the Ritz vectors have converged to an invariant subspace ofA spanned by the corresponding eigenspaces [25].

It can be shown that [21, Theorem 3.1] the nonzero eigenvalues ofVar(wi|b) = PjD−1
j PT

j are the reciprocals of

the Ritz values1/θ
j
i (called theharmonic Ritz valuesof A−1 onKj(A, r0) [30–32]). The eigenvectors ofVar(wi|b)

are the Ritz vectors which estimate the correspondingj eigenvectors ofA. Thus, when the CG sampler converges
with residualrj = 0, then [21, Remark 4]

[A−1 −Var(wi|b)]v = 0 (10)

for any v ∈ Kj(A, r0). This shows thatVar(wi|b) is the bestj-rank approximation toA−1 in the eigenspaces
corresponding to the extreme and well-separated eigenvalues ofA. In other words, the CG sampler has successfully
sampled from these eigenspaces.

Moreover, from Weyl’s Theorem [27] and the triangle inequality, it can be shown that||A−1 −Var(wi|b)||2 is at
least as large as the largest eigenvalue ofA−1 not being estimated, and it can get as large as this eigenvalue plus the
error in the Ritz estimates (see [21] for more detail). Like the difficulty faced by iterative eigenproblem solvers, the
accuracy of thej-rank approximationVar(wi|b) to A−1 depends on the distribution of the eigenvalues ofA.

Loss of conjugacy of the CG search directions occurs at the same iterationj when at least one of the Ritz pairs
converge [25], but this can happen before the CG sampler terminates (due to a small residual). As described by
Eq. (10), at the iteration when loss of conjugacy occurs,Var(wi|b) is the best approximation toA−1 in the Krylov
subspaceKj(A, r0) which contains the converged Ritz vector(s). Numerical simulations presented in [21] suggest
that after loss of conjugacy, continuing to run the CG sampler until the residual is small does not have a deleterious
effect on the samples. On the contrary, in the examples considered in [21], the CG sampler continued to sample from
new eigenspaces, providing samples with realized covariances which better approximatedA−1.

4. NUMERICAL EXPERIMENTS

In this section, we perform tests and comparisons with CG-EnKF. We consider two synthetic examples: the Lorenz 95
system, which is a first-order nonlinear, chaotic ordinary differential equation system that shares some characteristics
with weather models; and a two-dimensional heat equation with a forcing term that can be made large-scale.

4.1 Lorenz 95

We begin with the Lorenz 95 test case, introduced in [33], and analyzed in [34]. The model shares many characteristics
with realistic atmospheric models and it is often used as a low-order test case for weather forecasting schemes. We
use a 40-dimensional version of the model given as follows:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + 8, i = 1, 2, ..., 40. (11)
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The state variables are periodic:x−1 = x39, x0 = x40, andx41 = x1. Out of the 40 model states, measurements are
obtained from 24 states via the observation operatorKk = K, where

[K]rp =
{

1, (r, p) ∈ {(3j + i, 5j + i + 2)}
0 otherwise, (12)

with i = 1, 2, 3 andj = 0, 1, ..., 7. Thus, we observe the last three states in every set of five.
To generate data, we add Gaussian noise to the model solution with zero mean and covariance(0.15σclim)2I,

whereσclim = 3.641 (standard deviation used in climatological simulations). In the filtering methods, we useCεp
k

=
(0.05σclim)2I as the model error covariance andCεo

k
= (0.15σclim)2I as the observation error covariance. As initial

guesses in the filtering, we usexest
0 = 1 andCest

0 = I. For more details about the example, see [8, 9].
We run experiments with varying ensemble sizeN , and we note that in the linear case, asN → ∞, EnKF

converges to EKF (which in the linear case is just KF). When the modelM is nonlinear, however, the approximations
of the model covarianceCp

k computed in step i.2 of Algorithms 1 and 2 (EKF and EnKF, respectively) will be different;
specifically, in EKFCp

k is obtained from a linearization ofM aboutxest
k−1, whereas in EnKFCp

k is computed after
the ensemble members have been pushed forward by the model.

CG-EnKF is the ensemble version of the CG variational Kalman filter (CG-VKF), which was introduced in
[11]. In implementation, the two algorithms are very similar. Specifically, in CG-VKF the covariance approximation
PjD−1

j Pj defined in (8) is used directly, whereas in CG-EnKF, the ensembles are sampled fromN(xest
k ,PjD−1

j Pj).
Moreover, as for EnKF and EKF, in the linear case CG-EnKF converges to the CG-VKF asN → ∞. For complete-
ness, we present CG-VKF now.

Algorithm 6 (CG-VKF). Select initial guessxest
0 and low-rank covariance approximationB#

0 = X0XT
0 of Cest

0 ,
and setk = 1.

1. Compute the evolution model estimate and covariance:

a. Computexp
k = M(xest

k−1) and the linearizationMk ofM aboutxest
k−1 defined in (3);

b. Define(Cp
k)−1 using the matrix inversion lemma (5) withXk = MkPjD

−1/2
j ;

2. Compute variational Kalman filter and covariance estimates:

a. Use CG to estimate the minimizerxest
k of (4) and to compute the low-rank approximationPjD−1

j Pj of
∇2`(x|yk)−1 = Cest

k , wherej is the number of CG iterations;

3. Updatek := k + 1 and return to step i.

For comparisons, we plot the relative error

[relative error]k =
||xest

k − xtrue
k ||

||xtrue
k || , (13)

where, at iterationk, xest
k is the filter estimate andxtrue

k is the truth used in data generation. For the ensemble methods,
we test ensemble sizesN = 10 and N = 20. Since ensemble filters are stochastic methods, we show relative
errors averaged over 20 repetitions. In CG-based filters, the residual norm stopping tolerance was set to10−6, and
the maximum number of iterations was set to 50. From the results in the top plot in Fig. 1, we see that CG-EnKF
outperforms EnKF for small ensemble sizes. When the ensemble size gets larger, CG-EnKF, CG-VKF, and EnKF
performances approach each other, as expected. Finally, CG-VKF and EKF perform equally well, although EKF
reduces the error faster in early iterations. Nonmonotonicity in the reduction of the error plots is a product of the
chaotic nature of the Lorenz 95 model.

In the bottom plot in Fig. 1, we also compare the forecast skills given by different methods, using ensemble sizes
N = (15, 20, 40). For this comparison, we compute the following statistics for forecasts launched at every fourth
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FIG. 1: In the top plot is a comparison of relative errors. For EnKF and CG-EnKF, the upper and lower curves
correspond to ensemble sizes ofN = 10 and 20, respectively. In the bottom plot is a ‘forecast skill’ comparison.
For EnKF and CG-EnKF, the upper, middle, and lower curves correspond to ensemble sizesN = 15, 20, and 40,
respectively.

filter step, starting from the 64th step (when all filters have converged). Takej ∈ I := {4i | i = 16, 17, . . . , 100} and
define

[forecast errorj ]i =
1
40
‖M4i(xest

j )− xtrue
j+4i‖2, i = 1, . . . , 20, (14)

whereMn denotes a forward integration of the model byn time steps. Thus, this vector gives a measure of forecast
accuracy given by the respective filter estimate up to 80 time steps, or 10 days out. We average the forecast accuracy
over the 85 forecasts, and define the forecast skill vector as

[forecast skill]i =
1

σclim

√
1
85

∑

j∈I
[forecast errorj ]i, i = 1, . . . , 20, (15)
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Again, CG-EnKF outperforms EnKF, especially whenN is small. For instance, CG-EnKF withN = 20 performs as
well as EnKF withN = 40. CG-VKF and EKF perform in a similar way.

One might ask which of EKF, CG-EnKF, and CG-VKF is the most desirable in a given situation. In this example,
the numerical results suggest that EKF performs best, followed by CG-VKF. However, both EKF and CG-VKF require
the Jacobian matrixMk defined in (3) and its transposeMT

k , which cannot be efficiently computed in some large-
scale nonlinear examples. In such cases, CG-EnKF is the best approach. In terms of computational cost, for sufficiently
large-scale problems (such as the one considered next), the storage and inversion ofn×n covariance matrices required
in EKF is prohibitive:n2 elements must be stored and inversion requiresO(n3) operations. For CG-EnKF and CG-
VKF, nj elements are stored—wherej is the number of ensemble members for CG-EnKF and the number of stored
CG search directions for CG-VKF—and the matrix inverse computed in (5) requiresO(j3) operations, which is a
significant savings ifj ¿ n.

Finally, we compare CG-EnKF with the limited memory BFGS (LBFGS)-based ensemble Kalman filter of [20].
This method has the same form as Algorithm 3, except that in stepii , LBFGS is used in place of CG to compute
both the approximate minimizerxest

k of `(x|yk) defined in (4), as well as of the covarianceCest
k = ∇2`(x|yk)−1.

Sampling fromN(0,Bk), whereBk is the LBFGS approximation ofCest
k , requires some ingenuity, and the interested

reader should see [20] for details. For completeness, we present the LBFGS ensemble filter now.

Algorithm 7 (LBFGS-EnKF). Sample initial ensemblexest
0,i for i = 1, . . . , N fromN(xest

0 ,Cest
0 ), and setk = 1.

1. Same as Algorithm 3.

2. Compute a new ensemble using the LBFGS sampler:

a. Use LBFGS to estimate the minimizerxest
k of (4), as well as to compute the new ensemble membersxest

k,i

for i = 1, . . . , N fromN(xest
k ,Bk), whereBk is the LBFGS approximation of∇2`(x|yk)−1 = Cest

k .

3. Updatek := k + 1 and return to stepi.

For a fair comparison between the CG and LBFGS ensemble filters, the stopping criteria for LBFGS are the same
as for CG. In LBFGS, there are two tuning parameters: the initial inverse Hessian approximation and the number of
BFGS vectors that are stored in the algorithm (see [22]). We use a heuristic method for choosing the initial inverse
Hessian, as in [20, 22], and to avoid an unfair comparison we store all vectors in the LBFGS iterations. In Fig. 2, we
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FIG. 2: Comparison of variational ensemble Kalman filters implemented by CG and LBFGS with ensemble sizes
N = (10, 20). For LBFGS-EnKF and CG-EnKF, the upper and lower curves correspond to ensemble sizes ofN = 10
and 20, respectively.
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compare the relative errors for ensemble sizesN = (10, 20), averaged over 20 repetitions. In these cases, the CG
implementation performs better than the LBFGS implementation. When the ensemble size gets larger, the methods
perform equally well.

4.2 Heat Equation

The purpose of this example is to demonstrate CG-EnKF behavior when the dimension is large. The example is linear,
so we can directly compare to KF. However, as the dimension of the problem is increased, KF cannot be run due to
memory issues. Note that while the example does illustrate computational aspects related to the methods, this system
is well-behaved and we cannot conclude much about how the methods work in a high-dimensional chaotic case such
as numerical weather prediction.

The model describes heat propagation in a two-dimensional grid and it is written as a partial differential equation:

∂x

∂t
= −∂2x

∂u2
− ∂2x

∂v
+ α exp

(
− (u− 2/9)2 + (v − 2/9)2

σ2

)
, (16)

wherex is the temperature at coordinatesu andv over the domainΩ = {(u, v)|u, v ∈ [0, 1]}. The last term in the
equation is an external heat source, whose magnitude can be controlled with the parameterα ≥ 0.

We discretize the model using a uniformS × S grid. This leads to a linear forward modelxk+1 = Mxk + f ,
whereM = I−∆tL, where∆t is the time step,L is the discrete negative Laplacian, andf is an external forcing; see
[8, 9] for more details. The dimension of the problem can be controlled by changingS. The observation operatorK
is defined as in [8, 9], with the measured temperature a weighted average of the temperatures at neighboring points at
S2/64 evenly spaced locations.

Data are generated by adding normally distributed random noise to the model state and the corresponding response:

xk+1 = Mxk + f + N[0, (0.5σev)2I] (17)

yk+1 = Kxk+1 + N[0, (0.8σobs)2I]. (18)

In data generation, we useα = 0.75 and chooseσev andσobs so that the signal to noise ratios at the initial condition,
defined by||x0||2/S2σ2

ev and||Kx0||2/m2σ2
obs, are both 50. The initial condition for data generation is

[x0]ij = exp
(−(ui − 1/2)2 − (vj − 1/2)2

)
. (19)

For the filtering we use a biased model, where the forcing term is dropped by settingα = 0. The error covariances
used for model and observations areσ2

evI andσ2
obsI, respectively. We start all filters from initial guessx0 = 0.

For ensemble filters, all members are initialized to the same value and for KF we set initial covariance estimate to
Cest

0 = 0.
As our first test, we takeS = 2j and choosej = 5, which is the largest integer so that KF can still be computed on

a standard desktop computer. Thus, the dimension of the first test wasd = S2 = 1024. Then, we compared CG-EnKF
and CG-VKF in a case where the dimension is much higher: (j = 7, d = S2 = 16, 384). The stopping tolerance for
CG was once again set to10−6 and the number of maximum iterations was set to 20. Also, as above, the CG-EnKF
results are averages over 20 repetitions. EnKF results are not included in these experiments because it performs poorly
with such small ensemble sizes. In the top plot in Fig. 3, we compare KF, CG-VKF and CG-EnKF with ensemble
sizesN = (10, 20, 50), noting again that asN increases, CG-EnKF approaches CG-VKF. In the higher dimensional
case, as noted above, KF cannot be used anymore due to memory issues.

5. CONCLUSIONS

The ensemble Kalman filter is a state-space estimation technique approximating the standard extended Kalman filter.
In EnKF, an ensemble of approximate states is created at each time point and each member is propagated forward by
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FIG. 3: Performance comparison of KF, CG-VKF, and CG-EnKF with ensemble sizesN = (10, 20, 50) in the case
whered = 1024 (top) andd = 16, 384 (bottom). For EnKF and CG-EnKF, the upper, middle, and lower curves
correspond to ensemble sizesN = 10, 20, and 50, respectively.

the state-space modelM in (1). The covariance of the resulting ensemble is then used within the EKF formulas to
yield an efficient approximate filter.

In this paper, we show how the CG sampler of [21] can be applied to a variational formulation of EKF for the
creation of a new ensemble at each time point. The use of CG yields a point estimate of the state, and the computed
ensemble members are optimal within a certain Krylov subspace. Implementation of the CG sampler requires the
addition of only a single inexpensive line of code within CG. We call the resulting algorithm CG-EnKF, and we
present an analysis of the accuracy of the CG samples.

We apply CG-EnKF to two examples, one of which is large-scale and linear, and the other small-scale, nonlinear,
and chaotic. In both cases, it outperforms standard EnKF, and as the ensemble size increases, the relative error curve
for CG-EnKF approaches that of CG-VKF, as the theory suggests. Finally, CG-EnKF compares favorably to the
LBFGS-EnKF method of [20].
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