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This paper discusses a methodology for determining a functional representation of a random process from a collection of
scattered pointwise samples. The present work specifically focuses onto random quantities lying in a high-dimensional
stochastic space in the context of limited amount of information. The proposed approach involves a procedure for the
selection of an approximation basis and the evaluation of the associated coefficients. The selection of the approximation
basis relies on the a priori choice of the high-dimensional model representation format combined with a modified least
angle regression technique. The resulting basis then provides the structure for the actual approximation basis, possibly
using different functions, more parsimonious and nonlinear in its coefficients. To evaluate the coefficients, both an al-
ternate least squares and an alternate weighted total least squares methods are employed. Examples are provided for the
approximation of a random variable in a high-dimensional space as well as the estimation of a random field. Stochastic
dimensions up to 100 are considered, with an amount of information as low as about 3 samples per dimension, and
robustness of the approximation is demonstrated with respect to noise in the dataset. The computational cost of the so-
lution method is shown to scale only linearly with the cardinality of the a priori basis and exhibits a (Nq)

s, 2 ≤ s ≤ 3,
dependence with the number Nq of samples in the dataset. The provided numerical experiments illustrate the ability of
the present approach to derive an accurate approximation from scarce scattered data even in the presence of noise.

KEY WORDS: uncertainty quantification, least angle regression, high-dimensional model reduction, total
least squares, alternate least squares, polynomial chaos

1. INTRODUCTION

With the growing available computational power, and as more efficient numerical methods become available, do-
mains as diverse as engineering, chemistry, psychometrics, medicine, finance, or social sciences now heavily rely on
simulation for the prediction of more and more complex phenomena, often combining multimodels and high accu-
racy requirement. The prediction capability of modern simulations is often such that a new bottleneck for accuracy
has emerged from the lack of relevant boundary and/or initial conditions (BICs) as well as parameters intrinsic to
the model of the system at hand, e.g., diffusivity, viscosity, etc. These sources of uncertainty are hereafter simply
referred to as BICs. They are often poorly known and have to be estimated or modeled. This introduces modeling
errors which often constitute the main source of lack of accuracy in the simulation chain. This situation has triggered
a renewed interest for stochastic modeling where it is explicitly accounted for uncertainty in the model. The BICs may
sometimes be modeled from first principles but are often approximated in a functional form involving a set of influ-
encing parameters and identified from experimental measurements. However, more often than not, only relatively few
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measurements are available, in particular when a significant number of parameters is of influence so that representing
the BICs takes the form of a high-dimensional approximation problem.

If the random process, which output is to be represented in closed form, is driven by known equations, efficient
techniques may be used to determine its representation. In the specific case of high-dimensional quantities, tensor-
based representations have proved to be effective when applicable. In particular, low-rank approximations based on
an a priori chosen separated representation can be efficiently derived, see [1–4] in the context of uncertainty quan-
tification (UQ). If a closed-form model description of the process at hand is not available, one is typically left with
approximating it from a finite collection of instances, hereafter termed samples. When the process is known only from
a closed numerical code used as a black-box or if measurements can be made arbitrarily (design of experiments), some
properties of approximation theory can be exploited. For instance, measurements may be taken at some particular lo-
cations in the parameter space, possibly associating a weight to them, so that the random Quantity of Interest (QoI)
can be represented in the retained approximation basis with good accuracy using (sparse) quadrature techniques, [5];
see also [6] for an application to UQ. Anisotropy in the QoI may be exploited by biasing the quadrature weights [7–
9]. In [10], an alternate least squares (ALS) technique to estimate the coefficients has been considered with samples
lying on a tensor-product grid. Another situation of design of experiment arises in importance sampling where the
Markov-Chain Monte Carlo algorithm requires a new sample at a specific proposed location. This control over the
samples usually brings efficiency and allows one to approximate a reasonably behaved QoI with accuracy.

A different situation occurs when the data are scattered, with no ability to choose the set of samples nor to add a
measurement. This is a common situation, typically arising when samples come from a past experiment or are costly
to acquire so that new samples cannot be taken. In this context, one has to resort to a regression-based approach and the
coefficients of the approximation are then solution of an optimization problem. This type of approach was considered
in [11–13].

In the present work, the focus is specifically put on deriving a closed-form approximation of a high-dimensional
quantity of interest from a small, uncontrolled, collection of its samples. This requires one to determine an approx-
imation basis finely tuned to the data at hand and an efficient way of evaluating the associated coefficients. To this
aim, we rely on the fact that, as a counterpart of the curse of dimensionality associated with high-dimensional prob-
lems, real applications often reward with ablessingof dimensionality. Indeed, in many cases, the QoI can be well
approximated in a low-dimensional subspace of the solution space, sometimes involving orders of magnitude fewer
degrees-of-freedom. This typically occurs when the solution exhibits some degree of sparsity in the retained functional
space. Efficient techniques have been proposed in the recent past to take advantage of this situation and essentially
consist of matching the approximation with the observational data while promoting a sparse coefficient set. This class
of methods works well in many different contexts and has been recently applied to the UQ framework [14, 15]. These
techniques rely on the compressed sensing theory, e.g., [16, 17], and may seem well suited for the present problem
as they promote a low cardinality approximation of the QoI. However, they require one to handle a potentially huge
representation basis, ordictionary, and associated optimization problem, leading to severe memory and computation
limitations in the present high-dimensional context.

In this paper, we present a solution method combining the strength of different techniques, taking advantage of the
sparsity of the representation in a suitable basis and allowing an efficient approximation of a well-behaved multivariate
function with a low number of degrees-of-freedom hence compatible with a small experimental dataset. The driving
principle is first to consider a tight approximation basis based ona priori knowledge on the QoI at hand and to rely
on the available data to further refine it. In a nutshell, an initial approximation basis is first considered in the high-
dimensional model representation format (HDMR, [18, 19]), assuming it is suitable for representing the QoI. This
initial basis is hereafter referred to asa priori basis. Next, available data are used to refine it by retaining only its most
relevant basis functions through a constructive subset selection procedure based on a modification of the Least Angle
Regression approach proposed in [20]. Thisa posterioribasis defines a skeleton from which a final basis is built
and the associated coefficients are evaluated with an alternate least squares technique. The solution method allows
us to approximate random variables as well as random fields and is shown here to outperform both sparse grids and
tensored-based techniques.

The paper is organized as follows. The representation of a random quantity is central to the methodology discussed
in this paper. Standard techniques for deriving a closed-form approximation of a random variable from a finite set of
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samples are briefly recalled in Section 2. Similarly, different representation formats of functions in high-dimensional
spaces are subsequently heavily used in the paper and a short discussion is given in Section 3. The proposed solution
method is introduced and discussed in Section 4 and an algorithm is given. Scalability of the proposed approach
together with its robustness with respect to noise in the data is also discussed. In Section 5, the present methodology is
illustrated on a stochastic diffusion equation involving up to 100 dimensions and on the space-dependent solution of
the shallow water equations with random parameters. Accuracy, robustness, and scalability of the proposed approach
are shown. Concluding remarks close the paper in Section 6.

2. QUANTIFICATION OF UNCERTAINTY

Thanks to its pivotal role in the rest of the paper, the representation of a random quantity and standard ways of
evaluating it in closed form from a discrete set of samples is now briefly discussed.

2.1 General Framework

Random quantities are defined on a probability space(Θ,BΘ, µΘ) whereΘ is the space of elementary eventsθ ∈ Θ,
BΘ aσ-algebra defined onΘ, andµΘ a probability measure onBΘ. To make the description of the problem amenable
to a tractable representation, it is convenient to introduce a finite set of statistically independent random variables
{ξi}d

i=1 : Θ → Ξi ⊆ R, θ 7→ ξi(θ). The set of thesed random variables is defined on a probability space(Ξ,BΞ, µΞ)
with Ξ = ×d

i=1Ξi = ξ (Θ) ⊆ Rd, ξ := (ξ1 . . . ξd), BΞ ⊂ 2Ξ a σ-algebra onΞ andµΞ = µΘ ◦ ξ−1 the probability
measure onBΞ. Since the physical process at hand relies on random quantities belonging to(Θ,BΘ,µΘ), a suitable
description of its output, or its solution in case the physical process is described by a known mathematical model, may
be determined in(Ξ,BΞ, µΞ) as justified by the Doob-Dynkin lemma.

In this work, we restrict ourselves to random variables of physical significance, i.e., real-valued second-order
variables satisfying

E
θ

[
u (θ)2

]
:=

∫

Θ

u (θ)2 dµΘ (θ) =
∫

Ξ

u (ζ)2 dµΞ (ζ) =: E
ξ

[
u (ξ)2

]
< +∞, (1)

whereE denotes the expectation operator andu is the quantity of interest (QoI). It is then natural to consider the space
of square integrable functionsS for describing real-valued functions of the random quantities:

S := L2 (Ξ, µΞ) =
{

v : Ξ → R,ξ 7→ v (ξ) ; E
ξ

[
v (ξ)2

]
< +∞

}
. (2)

Upon introduction of a natural inner product ofS: 〈v, w〉L2(Ξ, µΞ) :=
∫

Ξ

v (ζ) w (ζ) dµΞ (ζ), ∀ v, w ∈ S, and the

associated norm‖v‖2L2(Ξ, µΞ) := 〈v, v〉L2(Ξ, µΞ), S is a Hilbert space. Further, we define〈v〉L2(Ξ, µΞ) := E ξ [v (ξ)].
One can now rely on functional analysis results and take advantage of approximation theory techniques to characterize
the outputu. Introducing a Hilbertian basis{ψk}k∈N of S, the output can then be uniquely represented asu (ξ) =∑
α

cα ψα (ξ).

The basis{ψα}α∈N is typically chosen orthonormal with respect to the inner product〈v, w〉L2(Ξ, µΞ). Orthonor-
mality of the basis leads to〈ψα, ψα′〉L2(Ξ, µΞ) = δαα′ , ∀α,α′ ∈ N, with δ the Kronecker delta, and the decomposi-
tion coefficients{cα} then express as

cα = 〈u, ψα〉L2(Ξ, µΞ) =
∫

Ξ

u (ζ) ψα (ζ) dµΞ (ζ), ∀α ∈ N. (3)

For a given representation basis{ψα} of S, the outputu (ξ) is entirely characterized by the set of coefficients
{cα}. For computational purpose, the infinite dimensional representation is substituted with a finite dimensional ap-
proximation relying on a subsetJ ⊂ N of the representation basis:

u (ξ) ≈
∑

α∈J
cα ψα (ξ). (4)
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2.2 Computing a Data-Driven Approximation

As seen above, in many situations, a closed-form model of the QoI is not available or not reliable enough to be used
and one can only rely on the sole available input-output information to approximate the outputu. The solution method
then consists of using a set of outputs given some inputs, i.e., samples of the process. One then looks for a functional

form of the map between the set of random variablesξ(q) and the output valueu
(
ξ(q)

)
=: u(q), ∀ 1 ≤ q ≤ Nq,

whereNq is the size of the available experimental set. Approximating the output under the functional form of Eq. (4)

results in evaluating the coefficients{cα} from
{(

ξ(q), u(q)
)}Nq

q=1
, ξ(q) =

(
ξ

(q)
1 . . . ξ

(q)
d

)
.

2.2.1 Direct Evaluation

If the sampling can be controlled, in the sense that samples can be drawn arbitrarily, the popular Monte Carlo approach
can be followed and the approximation coefficients are then estimated from

cα =
∫

Ξ

u (ζ) ψα (ζ) dµΞ (ζ) ≈
∑

q

u
(
ξ(q)

)
ψα

(
ξ(q)

)
. (5)

Monte Carlo-based estimation is very robust and easy to implement but suffers from a slowO
(
Nq

−1/2
)

asymp-

totic convergence rate. However, since the convergence rate does not depend on the dimensionality of the integral, this
is a wise choice for very high-dimensional problems where other methods fail. Alternatively, quasi-Monte Carlo meth-
ods generate a low-discrepancy sequence of samples improving the convergence rate of the evaluation for moderate-
to high-dimensional problems.

For low to moderate dimensionality problems, thed-dimensional integral arising in Eq. (3) may be advantageously
evaluated with a quadrature rule:

cα =
∫

Ξ

u (ζ) ψα (ζ) dµΞ (ζ) ≈
∑

q

w(q) u
(
ξ(q)

)
ψα

(
ξ(q)

)
, (6)

where
{
w(q)

}
are the weights associated with the quadrature points

{
ξ(q)

}
[21].

2.2.2 Regression

The above methods require some kind of control over the samples. If no experimental design can be exploited, a
solution method is then to reformulate the evaluation of the coefficients as a minimization problem:

c = arg min
c̃∈R|J |

‖u−Ψ c̃‖2, (7)

with c =
(
c1 . . . c|J |

)T
, u =

(
u(1) . . . u(Nq)

)T
, Ψ ∈ RNq×|J |, Ψqα = ψα

(
ξ(q)

)
, and |J | the cardinality of

the approximation basis{ψα}α∈J . For a full column rankΨ, the solution is given byc = Ψ+ u which is typically
evaluated using the Cholesky decomposition of the symmetric positive definite matrixΨT Ψ or the QR decomposition
of Ψ. When the size of the dataset grows, this standard least squares (LS) problem may become computationally
involved. The quasi-regression solution alleviates the computational burden and is given by

cα = ψT
α u/ ‖ψα‖22 , ψα =

(
ψα

(
ξ(1)

)
. . . ψα

(
ξ(Nq)

))T

, 1 ≤ α ≤ |J |. (8)

Standard LS formulation as considered in Eq. (7) treats all predictors{ψα}|J |α=1 the same way and uses the avail-
able data to estimate all the coefficients to produce an estimate with a low bias but often a large variance. As will
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be discussed in Section 4.3.1, additional properties of the QoI may be exploited or imposed to the approximation
coefficients. This class of approaches trades some increase in bias with a decrease in variance and often results in an
improved accuracy. A suitable solution method then typically formulates as a penalized LS problem

c = arg min
c̃∈R|J |

‖u−Ψ c̃‖2 + J (c̃). (9)

The properties of the penalized LS solution are driven by the choice of the functionJ , the flexibility of which
leads to a variety of solution techniques; see [22, 23]. Since we have no control over the sampling strategy, we will
rely on regression to estimate the approximation coefficients. The discussion of an efficient LS formulation in the
present context is postponed to Section 4.

3. FUNCTIONAL REPRESENTATION OF RANDOM VARIABLES

3.1 Tensored Bases

As seen above, a random quantity is conveniently approximated in a Hilbertian basis{ψk}. If the random quantity
is known, or expected, to exhibit a certain degree of smoothness along the stochastic space, a suitable and popular
choice is to take advantage of this smoothness using a spectral-based approximation relying on polynomials. Early
efforts toward this direction are the pioneering works of [24], who used univariate Hermite polynomialsψα (ξi) of
zero-centered, unit variance, normal random variablesξi ∼ N (0, 1). These polynomials define an orthogonal basis
of L2 (Ξi, µΞi), µΞi ∝ e−(1/2)ξ2

i . Tensorization of univariate Hermite polynomialsψ then leads to an orthogonal
basis ofL2 (Ξ, µΞ):

〈ψα,ψα′〉L2(Ξ, µΞ) ∝
∫

Ξ

ψα (ζ) ψα′ (ζ) e−(1/2)(ζT ζ) dζ ∝ δαα′ . (10)

This can be extended to polynomials orthogonal with respect to different measures [25–27], and constitutes the
so-called (generalized) polynomial chaos (PC) basis. A common practice is to consider an approximation spaceSp

spanned by polynomials of given maximum total degreep:

Sp = span

(
{ψα (ξ) = ψα1 (ξ1) . . . ψαd

(ξd)} ; α = (α1 . . . αd) ,

d∑

i=1

αi ≤ p

)
, (11)

and the number of terms to be determined in the approximation (4) is then|J | =
(

d + p
d

)
. We adopt the convention

ψ1 ≡ 1. When the random quantity is not smooth enough for a low degree polynomial fit to be accurate, approximation
schemes such ash/p-type refinement or multi-resolution analysis may be applied, see [28].

Some alternative representation formats specifically exploit the tensor-product structure of the Hilbert stochastic
spaceS and approximates ad-variate function with a series of products of lower dimensional functions. Efficient
algorithms allow us to determine the approximation coefficients of the representation by solving a series of low-
dimensional problems while never considering the full-dimensional problem at once. A general presentation of tensor-
structured numerical methods can be found in [29] while application to the approximation of a high-dimensional
random quantity is considered in [3, 4, 10, 30]. For instance, ad-variate quantity may be approximated under a
CANDECOMP-PARAFAC (CP) format [31, 32], with a sum of rank-1 terms, the simplest form of tensored-structure
format:

u (ξ) ≈
nr∑

r=1

f1,r (ξ1) . . . fd,r (ξd), (12)

with nr the retained rank of the decomposition and{fi,r}d
i=1 univariate functions. Assumingpth-order polynomi-

als for {fi,r}, the resulting cardinality of the approximation isdnr p. It thus exhibits a linear dependence with the
number of dimensions, in contrast with the exponential dependence of the PC. Alternative decomposition techniques,
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easier to evaluate and numerically more stable than decomposition (12), such as the Tucker or Tensor-Trains, can
be considered, see [29]. A tensored-structure format then constitutes a method of choice for deriving memory- and
CPU-efficient approximation of high-dimensional quantities. They also lead to a low-cardinality basis|J | so that the
conditioning of the approximation method remains good, in the sense that|J | ≤ Nq, a crucial feature for deriving a
good approximation from the scarce available data.

3.2 High-Dimensional Model Representation

An efficient alternative to these tensored-structure formats for representing high-dimensional quantities is discussed in
[18, 19]. It consists of representing a quantityu (ξ) with a sum of lower-dimensional terms accounting for increasing
levels of interaction between the constitutive variables:

u (ξ) = f∅ +
d∑

i=1

fi (ξi) +
d∑

i,j=1,
j>i

fij (ξi, ξj) + . . . + f12...d (ξ1, . . . , ξd) =
∑

γ⊆{1,...,d}
fγ, (13)

wherefγ are functions ofS and depend only on a subset of variablesξγ = {ξi}i∈γ andγ is a multi-index. This
decomposition is exact, unique, and does not introduce any approximation. An important property is that the modes
{fγ} are mutually orthogonal:〈fγ, fγ′〉L2(Ξ, µΞ) = 0, ∀γ 6= γ′ ⊆ {1, . . . , d}. The zeroth-order termf∅ accounts for
the mean and is invariant across the entire domainΞ, while the other modes are zero-mean:

f∅ = 〈u〉L2(Ξ, µΞ) , 〈fγ〉L2(Ξ, µΞ) = 0, ∀γ ⊆ {1, . . . , d} \∅. (14)

The rationale behind the expected success of this so-called high-dimensional model representation (HDMR) is
that many quantities of interest exhibit a significant dependence on low-dimensional groups of variables only, hence
having negligible high order interaction decomposition terms. This leads to an efficient approximation ofu with
only a low Nl-order HDMR:u (ξ) ≈ ∑

γ⊆{1,...,d} fγ

(
ξγ

)
, |γ| ≤ Nl. We denoteJf the set of retained modes,

Jf := {γ ⊆ {1, . . . , d} ; |γ| ≤ Nl}.
Functions{fγ} are evaluated with the application of a set of commuting projections{Pi} onto the outputu. The

projectionPi eliminates the effect of variableξi while leaving the effect of the others unchanged. LettingP∅ be the
identity operator onS, we definePη =

∏

i∈η

Pi, ∀η ⊆ {1, . . . , d}. Functions{fγ} can then be written [33],

fγ⊆{1,...,d}\∅ = P{1,...,d}\γ u−
∑

γ′(γ

fγ′ =
∑

γ′⊆γ

(−1)|γ|−|γ
′| P{1,...,d}\γ′ u, f∅ = P{1,...,d} u. (15)

Defining projections asPi u (ξ) =
∫
Ξi

u (ξ1, . . . , ξi−1, ζ
′, ξi+1, . . . , ξd) dµ (ζ′), the measureµ determines the

form of the projection. A popular choice consists of usingµ = µΞi so that the Analysis of Variance (ANOVA)
decomposition is obtained. An example of application of the HDMR representation to the approximation of a random
quantity is presented in [9].

Remark 1. These different functional representations are not totally distinct. For instance, the PC basis defined in
Eq. (11) can also be interpreted as a particular case of both HDMR and tensor-based expansion. For illustration,
consider the following PC basis approximation spaceSp = span ({ψ1 (≡ 1) , ψ2 (ξ1) , ψ2 (ξ2) ,ψ3 (ξ1) ,ψ2 (ξ1)
ψ2(ξ2), ψ3(ξ2)}). This corresponds to a HDMR representation withNl = 2 andf∅ ∈ span (ψ1), f1∈ span (ψ2(ξ1),
ψ3 (ξ1)), f2 ∈ span (ψ2 (ξ2) , ψ3 (ξ2)), f12 ∈ span (ψ2 (ξ1) ψ2 (ξ2)). Further, this can also be reformatted in a
nr = 3-rank CP format, say withf1,1 ∈ span (ψ1), f2,1 ∈ span (ψ1, ψ2 (ξ2) , ψ3 (ξ2)), f1,2 ∈ span (ψ2 (ξ1)),
f2,2 ∈ span (ψ1, ψ2 (ξ2)), f1,3 ∈ span (ψ3 (ξ1)) andf2,3 ∈ span (ψ1).
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4. QUANTIFYING UNCERTAINTY OF SCATTERED DATA

4.1 Setting Up the Stage

In the following, we will consider that the quantity of interestu is a scalar-valued random field, indexed by space
and/or timex ∈ Rdx and depending on a set of random variablesξ ∈ Rd. To approximate it, the only available piece of

information is a collection of scattered samples
{

x(q),ξ(q), u(q)
}Nq

q=1
. In case these data come from an experimental

context, the coordinatesξ(q) are not directly measurable. They are then inferred from auxiliary observations and
depend on the modelization.1 Since the underlying random quantityu is only known through these samples, no
governing equation for the QoI can be exploited and, say, Galerkin projection-based weak-formulation methods cannot
be employed. Further, these samples are scattered and do not follow a deterministic rule so that no deterministic
sampling strategy can be assumed. Quadrature-based techniques can then not be applied either and one has to resort
to regression to estimate the coefficients of the approximation in the retained basis{ψα}. StandardL2-regression
solves Eq. (7) which is only well-posed for a matrixΨ such thatΨT Ψ is invertible so that it requires the number of
observations to be larger than the cardinality of the approximation basis,Nq ≥ |J |.

The choice of a good approximation basis in a general setting largely remains an open question. If one is given
a dictionary of approximation functions,a priori selecting the best terms so that they can be evaluated from the data
is a combinatorial optimization problem which algorithmic complexity quickly becomes intractable when the size of
the dictionary grows. Dictionary-learning techniques require a training while availability of an independent training
set cannot be assumed here.

The proposed approach is as follows. We separate the determination of an efficient representation format from
the evaluation of the coefficients. We first choose ana priori general format for the approximation ofu, Section 4.2.
The selection of particular terms to be included in the approximation basis is left to a dedicated subset selection
procedure which will further refine the approximation basis and make it as tight as possible, Section 4.3. A good
a priori basis is motivated by results from compressed sensing which show that the number of samples necessary
for accurately selecting the dominant basis functions of aK-sparse QoI (i.e., havingK non-zero coefficients in the
retained approximation basis) varies asK log (|J |) [34], illustrating the fact that it becomes increasingly difficult to
select the best terms when the size|J | of thea priori dictionary increases. The subset selection hence produces ana
posterioribasis suitable for the data at hand. However, this basis islinear in its predictors as required by the selection
method. To circumvent this limitation, thea posterioribasis is used as a skeleton only, of the best structure, and the
final approximation of the QoI is evaluated with a different basis, of the same skeleton, but possibly nonlinear in its
predictors, Section 4.4. A sketch of the solution method is shown in Fig. 1.

A priori basis of
cardinality |Jprior|.
(data-independent)

A posteriori basis of
cardinality |Jpost|.
Jpost ⊆ Jprior.

Final basis (possibly
nonlinear in its predictors)

of cardinality |Jeff |.

Actual
approximation

Subset selection
(data-driven)

FIG. 1: Sketch of the solution method.

4.2 A Priori Choice of Representation of a Random Variable

We first focus on approximating a random variable and will discuss approximation of a more general random process
in Section 4.8. The QoI is hence here a random variableu (ξ).

In this work, we want to take advantage of the low order interactions of constitutive variables for many quantities
of practical interest as mentioned in Section 3.2. Previous works have shown evidence of this low interaction con-
figuration in various situations [9, 18, 19], and the QoI is hence chosen to be approximated under the HDMR form,

1For instance, in a fluid flow, the Reynolds number may be uncertain and modeled as a random variable parametrized byξi. The
value ofξi in each sampleξ(q) is then auxiliary deduced from the measurement of the flow velocityV and the modelV (ξi).
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Eq. (13). An example is considered in Appendix A and demonstrates that a general HDMR format approximation
with a tensor-based description of the interaction modes{fγ} involved in the HDMR may compare favorably with
a full tensor-based approximation in terms of required number|Jprior| of basis functions for a given reconstruction
accuracy, even for reasonably large dimensional problems. This motivates our choice of an HDMR format for thea
priori , data-independent, basis.

4.3 Subset Selection

We now build upon from thea priori basis and further improve it with ana posteriori, data-driven, procedure.

4.3.1 A Direct Approach

As discussed in Section 2.2, different techniques may be used to compute the coefficients of an approximation. In the
case considered in this paper, the available data are scarce while the cardinality|Jprior| of thea priori approximation
basis may be large, in particular when the dimensionalityd of the problem is large. It can then result in an ill-
posed problem where one has to estimate|Jprior| coefficients for each stochastic modeλn from Nq ¿ |Jprior|
pieces of information. However, this situation often only reflects our lack of knowledge on the quantity at hand
and how conservative this naive approximation method is. Indeed, high-dimensional problems are often intrinsically
sparse and lower dimensional. In the present setting, it is likely that many dimensions actually hardly contribute to
the approximation and that representing the dependence of the QoI along only a subset of the dimensions yields
an acceptable accuracy. In oura priori HDMR representation, it means that many interaction modes{fγ} can be
discarded without significantly affecting the accuracy. The challenge for an efficient solution method is then to reveal
and exploit the low-dimensional manifold onto which a good approximation of the solution lies. As an illustration,
if u (ξ) = g (ξi) was depending only on one dimensioni, i ∈ {1, . . . , d}, information theory allows us to show
that one only requiresm + 1 + dlog2 de function evaluations to approximate a sufficiently smooth functiong ∈ Cs,
havings continuous derivatives, so that‖u− û‖C(Ξi)

≤ a hs, h := 1/m, wherea ≥ 0 is related to a norm ofg [35].
This number of samples actually is directly related to the number of information bits required to represent the integer
i ∈ [1, d].

While determining which interaction modes are dominant is an NP-hard problem in general, recent results have
shown that a good estimation of the best subset can be obtained as the solution of a convex optimization problem. In
particular, the LASSO formulation [36] has been proven effective. One of its formulations, referred to asbasis pursuit
denoising, writes

c = arg min
c̃∈R|Jprior|

‖c̃‖1 s.t. ‖u−Ψ c̃‖2 ≤ ε, (16)

with Ψ the matrix of evaluations of the approximation basis andε the approximation residual. Efforts from the signal
processing community, where the theory supporting these results is termedcompressed sensing, have demonstrated
its good recovery properties in the case whereNq < |Jprior|, e.g., [17, 37, 38]. In particular, this formulation achieves
provable and robust recovery bounds.2

The compressed sensing technique was proved very effective and is now being applied in many areas, including
uncertainty quantification, [14, 15]. However, standard implementations of the algorithm require the sensing matrix
Ψ to be available. This bears an intrinsic limitation when it comes to high-dimensional problems as it requires the use
of the whole dictionary at once from which to select the basis functions associated with the dominant coefficients.
While effective, this approach is not deemed tractable for high-dimensional problems, neither in terms of storage
requirement nor CPU burden.

2For a sufficiently incoherent set of approximation and test functions, aK-sparse solutionc to Eq. (16) satisfies [39]‖c? − c‖2 /
h

(
ε + ‖c? − c?

K‖1 /
√

K
)

, whereh > 0 is a constant depending on the set of approximation and test functions andc?
K is the

K-term approximation ofc? given by an oracle, i.e., it is the bestK-term approximation ofc? if one was given full knowledge of
it.
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4.3.2 A Progressive Selection

To circumvent the issues identified above, we here use a bottom-to-top approach which achieves a forward stagewise
regression by progressively revealing important basis functions. Introduced by [20, 23], the least angle regression
selection (LARS) technique relies on analytical solutions to speed up computations and essentially follows the piece-
wise linear regularization path of the LASSO.3 One advantage of LARS over other techniques is that the potential
dictionary is never stored nor used as a whole. A LARS approach in the UQ framework was also considered in
[40].

We consider the following polynomial approximatioñfγ of fγ:

fγ

(
{ξi}i∈γ

)
≈ f̃γ

(
{ξi}i∈γ

)
:=

∑

α, |α|≤p̃

cγ,α ψα

(
{ξi}i∈γ

)
, ψα =

∏

i∈γ

ψαi
(ξi), (17)

with α = (αi, i ∈ γ), αi ∈ {1, . . . , p̃}. Interaction modes{fγ} are then approximated inPp̃, the space of polynomials

with maximum total degreẽp, by modes
{

f̃γ

}
linear in their coefficients.

In the present framework, the HDMR approximation format naturally leads togroupsof predictors whose impor-
tance in describing the QoIu follows a similar trend. These groups are defined by the subsets{Jγ} of predictors

which belong to a given interaction modefγ, Jγ =
{

ψα

(
{ξi}i∈γ

)}
, and are likely to be strongly correlated. For

instance, if the QoI exhibits a strong dependence on a given dimensionξj , one then wants to incorporate the whole

set of predictors
{

ψα

(
{ξi}i∈γ

)}
, γ : j ∈ γ without evaluating their relevance individually. One then looks for an

approximation which is sparse at the level of groups of functions. Note that grouping predictors significantly alleviates
the computational cost associated with the subset selection as further discussed in Section 4.7.

It is important to recall that this approximation format is made only for the subset selection step and is independent
of the format the QoI will finally be approximated in. The selection of groups reduces to selection of interaction modes
fγ and leaves the possibility for using different formats between the subset selection step and the coefficients evalua-
tion step: an interaction mode found to be dominant is incorporated to the active dictionaryJf,post independently of
the way its contribution to the approximation ofu is actually determined in the end. Indeed, since the LARS technique
only applies to predictorslinear in their coefficients, an approximatioñfγ of the form (17) is suitable for the selection
of the dominant groups. However, the final approximationf̂γ of the retainedfγ may rely on predictorsnonlinear in
their coefficients: the subset selection step only serves to determine which interaction modes will be considered in the
a posterioriapproximation basis, the “skeleton”{fγ : γ ∈ Jf,post}.

The selection is made using a modified LARS approach and the following optimization problem is solved:

c = arg min
c̃∈R|J |

‖u−Ψ c̃‖22 + τ
∑

γ∈Jf

‖c̃γ‖Kγ
, (18)

with τ > 0 the regularization parameter and‖·‖Kγ
a norm induced by a positive definite matrixKγ. All predictors

within a groupγ are here weighted similarly so that we use a scaled identity matrixKγ = I|Jγ| /|Jγ|, ∀γ ∈ Jf . The
regularization term is a combination ofL2- andL1-norms and penalizes theL1-norm of the “group” vector to promote
a collective behavior: either a group is basically active (nonzeroKγ-norm) or inactive, essentially disregarding the
detailed behavior within the group. This group LARS (gLARS) strategy was first proposed in [41] and the algorithm
presented in [42] was modified to solve the optimization problem (18).

3In a nutshell, it consists of selecting, from thea priori setJprior, the predictor (approximation function) which is most correlated
with the current residual, move this predictor to the active setJpost, compute the increment solution vector by minimizing the
residualL2-norm, and follow the descent direction along the increment vector until a predictor from the inactive set becomes as
correlated with the residual as those from the active set. The whole process is then repeated and allows to sequentially build the
optimal subset of approximation functions by exploring the Pareto front defined by the competition between the two terms of the
unconstrained formulation of the optimization problem of Eq. (16).
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The set of dominant modes{fγ} is first determined by the gLARS approach with a low approximation orderp̃
and the basis is subsequently further refined by a LARS step, usingL1-regularization, onto these selected modes only
now approximated with a higher̃p for improved accuracy.

4.4 Functional Spaces for the Final Approximation Basis

We now discuss the general methodology for approximating a random variableu (ξ), from a finite set of its real-
izations. Ana priori choice of representation format was first made, Section 4.2, and was adjusted based on the
data through the subset selection procedure, thea posterioristep, Section 4.3. This has selected a set of groups, or
interaction modes,{fγ}γ∈Jf,post

deemed to most contribute to the HDMR representation of the QoIu. The actual
approximation ofu will rely on these selected groups but does not bear restriction on the linearity with respect to the
coefficients so that different suitable formats, possibly nonlinear, can then be considered.

Many possibilities exist to determine an approximation of{fγ,γ ∈ Jf,post} in a polynomial space, e.g., maximum
partial degree, maximum total degree, hyperbolic cross, etc. For sake of simplicity, the spacePp of polynomials with
maximum total degreep is retained as a reasonable compromise between cardinality|Jγ| and expected accuracy of
the approximation̂fγ:

fγ

(
{ξi}i∈γ

)
≈ f̂γ

(
{ξi}i∈γ

)
=

∑

α,|α|≤p

cγ,α ψα

(
{ξi}i∈γ

)
, ψα

(
{ξi}i∈γ

)
=

∏

i∈γ

ψαi (ξi),

α = (αi, i ∈ γ) , αi ∈ {1, . . . , p} , 1 ≤ |γ| ≤ N
(PC)
l ≤ min (Nl, p) . (19)

The cardinality associated with this approximation offγ at a given iteration levell = |γ| is |Jγ| = p!/ (l! (p− l)!)
and usually provides an accurate approximation with a low number of coefficients for low dimensions|γ|.

When the dimension|γ| increases, the number of terms inf̂γ decreases and eventually degenerates for|γ| > p. For

modes of interaction order highe-than a prescribed thresholdN
(PC)
l , a low-rank canonical decomposition is instead

considered:

fγ

(
{ξi}i∈γ

)
≈ f̂γ

(
{ξi}i∈γ

)
=

nr∑
r=1

∏

i∈γ

p∑
α=1

cr,i
γ,α ψα (ξi), N

(PC)
l < |γ| ≤ Nl ≤ d. (20)

The maximum number of modes at a given interaction levell is d!/ ((d− l)! l!). Relying on an approximation in
Pp for interaction modes of order|γ| ≤ N

(PC)
l and on low-rank approximation for higher interaction order modes,

with maximum ranknr, the total cardinality of this approximation format is bounded from above by

|Jeff | ≤
N

(PC)
l∑

l=0

d! p!
(d− l)! (l!)2 (p− l)!

+
Nl∑

l=N
(PC)
l +1

d!
(d− l)! l!

nr l p. (21)

4.5 Algorithm for Approximating a Random Variable

We will denoteJf,eff the set of modes
{

f̂γ

}
γ⊆Jf,post

finally considered for the approximation ofu andJeff the

set of associated predictors{ψα}. The interaction modes are estimated sequentially. Once a new mode is evaluated,
the whole approximation may be updated by reevaluating the coefficients of the predictors{ψα} already evaluated

of the current evaluation setJf,eff ∈ Jf,post. Let z =
(
z(1) . . . z(Nq)

)T
be the residual vector after basis functions

f̂γ, γ ∈ Jf,eff have been evaluated. The coefficients involved in the next modef̂γ, γ ∈ Jf,post\Jf,eff to be evaluated

are then determined. Ifγ is such that|γ| ≤ N
(PC)
l , they are computed from the following system of equations4:

4While not found necessary here, the solution of the LS problem may be regularized by adding a generic term of the formβ ‖L c̃‖2.
A typical choice isL = I|Jγ| but one may also want to consider nondiagonal matricesL.
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{
cγ,· = arg min

c̃∈R|Jγ|
‖z −Ψ c̃‖2, ∀ i ∈ γ, γ ⊆ Jf,post, |γ| ≤ N

(PC)
l , (22)

with cγ,· = (cγ,αi , i ∈ γ)T and

z(q) = u(q) −
∑

γ′⊆Jf,eff\γ
f̂γ′

({
ξ

(q)
i

}
i∈γ′

)
, z =

(
z(1) . . . z(Nq)

)T

,

Ψqα = ψα

({
ξ

(q)
i

}
i∈γ

)
, Ψ = [Ψqα] . (23)

To solve for the coefficients associated with predictors nonlinear in their coefficients, an alternate least squares
(ALS) approach is used, reformulating the nonlinear problem into a set of coupled linear equations:

{
cr,i

γ,· = arg min
c̃∈Rp

‖zi −Ψ c̃‖2, ∀ i ∈ γ ⊆ Jf,post, N
(PC)
l < |γ| ≤ Nl, (24)

with cr,i
γ,· =

(
cr,i

γ,1 . . . cr,i
γ,p

)T

and

z
(q)
i = u(q) −

∑

γ′⊆Jf,eff

f̂γ′

({
ξ

(q)
i

}
i∈γ′

)
−

r−1∑

r′=1

∏

i′∈γ

p∑

α′=1

cr′,i′

γ,α′ ψα′
(
ξ

(q)
i′

)
,

Ψqα = ψα

(
ξ

(q)
i

) ∏

i′∈γ,i′ 6=i

p∑

α′=1

cr,i′

γ,α′ ψα′
(
ξ

(q)
i′

)
, Ψ = [Ψqα] . (25)

This whole step is embedded in a loop over the modesfγ,γ ∈ Jf,post retained by the subset selection procedure.

The cross-validation error (CVε) is estimated from̂Nq validation samples
{

ξ(q̂), u(q̂)
}N̂q

q̂=1
independent from theNq

samples of the training set.5 If the cross-validation error has increased over the last two loops, the approximation basis
is likely to have become too large with respect to the available data and iterations are stopped. The retained basis is
then the one that has led to the lowest CVε. If CVε keeps decreasing, the next interaction mode as selected by the
subset selection step is considered and added to the current active setJf,eff and the whole iteration is carried out.
Once the approximation is determined, the coefficients are updated with the same sequential technique using both the
training and the validation points,Nq + N̂q. The approximation accuracy is estimated by the relativeL2-normε of

the approximation error estimation evaluated from aÑq-point test set
{(

x(q̃), ξ(q̃), u(q̃)
)}Ñq

q̃=1
, independent from the

training set:

ε2 := ‖u− û‖22 / ‖u‖22 , u =
(
u(1) . . . u(Ñq)

)
, û =

(
û(1) . . . û(Ñq)

)
. (26)

The global methodology is summarized in Algorithm 1. Statistical moments can be readily evaluated from the present
HDMR of the QoI, see Appendix B.

5A ratio N̂q/Nq ' 1/2 is typically accepted as a reasonable splitting of the set of samples. We here use the simplest cross-
validation method but more sophisticated techniques (k-fold, Leave-One-Out, etc.) are available, see for instance [23]. While more
accurate, they are significantly more computationally expensive.
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Algorithm 1: Sketch of the solution method for approximating a random variableu (ξ)

1 Select ana priori basis in HDMR format. Choosep, Nl, N
(PC)
l , nr andp̃. Initialize z =

(
u(1) . . . u(Nq)

)T
.

2 Subset selection step. Solve the LASSO optimization problem with the gLARS algorithm−→ sequence ofa
posterioriapproximation bases indexed bys with ordered groupsJf,post =

{
γ(s)

}
. Initialize s andJf,eff :

s ← 0, Jf,eff ← ∅.
3 Solve the approximation problem:
4 repeat
5 s ← s + 1.

6 Consider the next modêfγ(s) from the setJf,post selected in (2):Jf,eff ← Jf,eff

⋃
γ(s).

7 Solve for the approximation coefficients{cγ}γ∈Jf,eff
by alternately solving for the coefficients of modes{

f̂γ

}
γ∈Jf,eff

, Eqs. (22, 24). [Update step]

8 Estimate the cross-validation error CVε and evaluate the current approximationû =
(
û(1) . . . û(Nq)

)T
.

9 Update the residualz ← u− û.
10 until CVε has increased over the last two passess ands− 1.
11 Jf,eff ← Jf,eff\

{
γ(s), γ(s−1)

}
.

12 Update the coefficients{cγ}γ∈Jf,eff
of the retained modes with the extended set of data

{
ξ(q), u(q)

}Nq+N̂q

q=1
. It

finally yieldsû (ξ) expressed in the basis
{

f̂γ

}
γ∈Jf,eff

.

4.6 Robust Estimation

An important concern when deriving a methodology is the robustness with respect to noise and a more robust alterna-
tive to the methodology discussed so far is now presented.

To evaluate the approximation coefficients once an approximation basis is determined from the subset selection
step, a standard approach is to minimize a norm between target observations and reconstructed approximation as done
in the previous section, Eqs. (22) and (24): the approximation coefficients of a given modef̂γ are basically given by

cγ = arg minc̃∈R|Jγ| ‖z −Ψ c̃‖2, with Ψ ∈ RNq×|Jγ| the matrix of theγ-group predictors evaluated in
{

ξ(q)
}

and

z the target residual vector. The solution to this least squares problem is equivalently obtained from

{c, ∆z} = arg min
c̃∈R|Jγ|

∥∥∥∆̃z
∥∥∥

F
s.t. z + ∆̃z = Ψ c̃, (27)

which minimizes the Frobenius norm of the residual vector. This implicitly assumes no error in the coordinates
{

ξ(q)
}

at which the target is evaluated. For instance, these coordinates may be known as the solution of auxiliary inference
problems. This brings errors so that the actual coordinates vector is only estimated with an error∆ξ(q). SinceΨ
depends onξ, an error predictor matrix∆Ψ (ξ, ∆ξ) := Ψ (ξ + ∆ξ)−Ψ(ξ) arises and the estimation problem (27)
then rewrites as a total least squares problem [43]:

{c,∆Ψ, ∆z} = arg min
c̃∈R|Jγ|

∥∥∥∆̃Ψ ∆̃z
∥∥∥

F
s.t. z + ∆̃z =

(
Ψ + ∆̃Ψ

)
c̃. (28)

The realizations of the error in the data
{

∆ξ(q) (θ) , ∆z(q) (θ)
}

are modeled to follow the distribution of zero-

meaniid variables. Further, predictors may be correlated:

E
θ

[(
∆ψα − E

θ
[∆ψα]

) (
∆ψα′ − E

θ
[∆ψα′ ]

)]
6= 0, (29)
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with ∆ψα = ∆ψα

(
ξ(q),∆ξ(q)

)
. A general approach to solve the weighted total least squares (wTLS) problem of

Eq. (28) consists of the minimization of the usual weighted residual sum of squaresρ2 [44]:

ρ2 := vec (∆X)T Λ−1 vec (∆X) , ∆X := (∆Ψ ∆z)T
, X := (Ψ z)T

, (30)

where the ‘vec’ operator unfolds a genericm × n matrix into amn vector andX is the data matrix. The covariance

matrix for X, Λ :=
〈

vec
(
X − 〈X〉Nq

)
vec

(
X − 〈X〉Nq

)T
〉

Nq

, is evaluated and the minimization problem (28)

is solved using the ALS-based algorithm proposed in [45].
As will be shown in the numerical experiments examples, Section 5.1.4, the present total LS formulation allows

one to improve the approximation quality from noisy data.

Remark 2. When a large amountNq of experimental information is available, the data matrixX ∈ R(|Jγ|+1)×Nq

can be large. The resulting correlation matrixΛ then has potentially very large dimensions. However, since the noise is
assumed independent from one sample to another,Λ has a block diagonal structure. Further, it is a symmetric definite
positive matrix, allowing for additional reduction of the storage requirement. The structure ofΛ is then exploited in
solving the weighted total least squares problem above through sparse storage and operations.

4.7 Asymptotic Numerical Complexity

While the primary motivation for this work is to determine an accurate representation of a random quantity from a
small set of its realizations, it is desirable that the solution method remains computationally tractable. As seen above,
the algorithm for approximating a random variable is essentially two fold.

The selection process essentially consists in sequentially building a subset, Section 4.3. Each step of the sequence
involves solving a LS problem of growing size and finding the basis function, or group of functions, within thea priori
setJprior most correlated with the current residual. The matrix of the LS problem isΨ ∈ RNq×|Jpost|, with |Jpost|
the cardinality of the current set of selected basis functions. The LS problem is solved via a QR decomposition ofΨ
in O

(
Nq |Jpost|2

)
operations. The iterative selection process is carried out with a growing active setJpost until the

problem becomes ill-posed, i.e., until|Jpost| is aboutNq. We use grouped LARS and denote|Jγ,post| the average
cardinality of the retained group predictors, i.e., the average number of basis functions in the group added to the active
set. The subset selection process retainsnf groups of variables so that the total cost associated with the LS step of the
subset selection is

JLS = O
( nf∑

s=1

Nq

(
|Jγ,post| s

)2
)

. (31)

As groups of predictors are moved to the active set, the size of the remaininga priori set decreases,|Jprior|(current)

' |Jprior| − s |Jγ,post|. The cost associated with the evaluation of the correlation for each predictor in the inactive
set is then

Jcorrel = O
( nf∑

s=1

Nq

(
|Jprior| − s |Jγ,post|

))
∝ Nq. (32)

In practice, the cost associated with the evaluation of the correlation of the predictors in the inactive set with the
current residual dominates so that the whole cost of the subset selection finally approximates as

Jsubsel = JLS + Jcorrel ' O
(

Nq |Jprior|nf −Nq |Jγ,post| nf (nf + 1)
2

)
. (33)

The second step of the solution method deals with the evaluation of the approximation coefficients, Sections 4.4–
4.5. The cost associated with evaluating the coefficients of anlth interaction order mode,1 ≤ l ≤ N

(PC)
l , encompasses

the matrixΨ assembly costO (Nq p!/ (l! (p− l)!)) and the LS solutionO
(
Nq (p!/ (l! (p− l)!))2

)
. Since modes
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{
f̂γ

}
γ∈Jf,eff

already evaluated may be updated once an additional one from the selected set is considered, the total

cost is the sum of an arithmetic sequence. Its exact formulation depends on the selected set and is difficult to derive
in closed-form. As a simple example, updating all coefficients for each new modef̂γ considered, neglecting the cost
associated with first-order interaction modes and assuming only second-order interaction modes are retained in thea
posterioriset, an upper bound for the cost writes

Jcoef ≤
|Jf,eff |∑

s=1

[O (
s Nq pl

)
+O (

sNq p2l
)]

, with l = 2, (34)

where|Jf,eff | is the number of groups finally retained for the approximation by the CV test, see Algorithm 1. A
quantitative discussion of the numerical cost is given in Section 5.1.5 with an illustrative example.

4.8 Approximation of a Random Process by a Separated Representation

The approximation of a random process, say, a space-dependent uncertain quantityu (x, ξ) is now considered in the
form of separation of variables:

u (x, ξ) ≈ w0 (x) +
N∑

n=1

wn (x) λn (ξ) ≡
N∑

n=0

wn (x) λn (ξ), λ0 ≡ 1. (35)

The ‘spatial’ modes are associated with all physical dimensions the random process may be indexed upon (space,
time, . . . ) so thatx = (x1 x2 . . . t . . .) ⊆ Rdx . They are defined as:wn (x) =

∑|Jx|
l=1 c

(w)
l,n φl (x) with {φl} a chosen

truncated basis of cardinality|Jx|. The functional form of “stochastic” modes{λn} and their evaluation was discussed
in Sections 4.2–4.5.

The spatial and stochastic modes of the approximation (35) are sequentially determined in turn. Let‖v‖Nq
:=

〈v, v〉Nq
be the norm induced by the data-driven inner product:〈·, ·〉Nq

: R × R → R, (v, w) 7→ 〈v, w〉Nq
:=

∑Nq

q=1 v(q) w(q). Assuming{λn} known and projecting Eq. (35) onto the space spanned by{φl}, the coefficients{
c
(w)
l,n

}
l

of the deterministic modewn are the solution of the following problem:

〈u,φk λn〉Nq
=

〈
n−1∑

n′=0

wn′ λn′ +
|Jx|∑

l=1

c
(w)
l,n φl λn, φk λn

〉

Nq

, ∀ 1 ≤ k ≤ |Jx|,

⇔ c
(w)
·,n = arg min

c̃∈R|Jx|

∥∥∥∥∥u−
n−1∑

n′=0

wn′ ¯ λn′ − (Φ c̃)¯ λn

∥∥∥∥∥
2

, (36)

whereΦ ∈ RNq×|Jx|, Φql = φl

(
x(q)

)
, wn =

(
wn

(
x(1)

)
. . . wn

(
x(Nq)

))T
, λn =

(
λn

(
ξ(1)

)
. . . λn

(
ξ(Nq)

))T

and¯ is the Hadamard product. Similarly, the stochastic modeλn is evaluated by determining the set of coefficients{
c
(λ)
n

}
minimizing

∥∥∥u−∑n−1
n′=0 wn′ ¯ λn′ −wn ¯ λn

({
c
(λ)
n

})∥∥∥
2

using Algorithm 1 presented in Section 4.5.

The spatial modewn is then evaluated from Eq. (36) given all the other information and the whole iteration is repeated
until convergence of the pair{wn, λn}. The next pair can then be determined with the same methodology withn ←
n + 1. The algorithm is summarized in Algorithm 2.

Remark 3. If the separated approximation grows beyond a few modes, it is beneficial to update the coefficients of,
say, the spatial modes for improved accuracy: solve for{w0, . . . , wn} given{u, λ0, . . . , λn}.

International Journal for Uncertainty Quantification



Quantification of Uncertainty from High-Dimensional Scattered Data via Polynomial Approximation 257

Algorithm 2: Sketch of the solution method for approximating a random process

1 Choose|Jx|. Initialize z = u andλ0 = 1 and setn ← 0.
2 repeat
3 while ‖λn‖Nq

not convergeddo

4 Solve for coefficients
{

c
(w)
l,n

}|Jx|

l=1
of the deterministic modegivenλn andz using Eq. (36) and

normalizewn (x) =
∑

l c
(w)
l,n φl (x), ‖wn‖Nq

= 1.

5 Solve for the stochastic modeλn (ξ) using Algorithm 1 givenwn andz. If n = 0, λ0 ← 1.

6 Setz ← z −wn ¯ λn, andn ← n + 1.
7 until a termination criterion is met (for instance,‖λn‖Nq

below a threshold or maximum rankn > N reached).

5. NUMERICAL EXPERIMENTS

The methodology developed in the previous sections is now demonstrated on a set of examples. Different aspects of
the global solution method are illustrated on a 1D stochastic diffusion equation. A more computationally involved
example is next considered with a shallow water problem with multiple sources of uncertainty.

5.1 Stochastic Diffusion Equation

We consider a steady-state stochastic diffusion equation onΩ × Ξ, Ω = [x−, x+] ⊂ R, with deterministic Dirichlet
boundary conditions:

∇x

(
ν

(
x,ξ′

) ∇xu (x, ξ)
)

= F
(
x, ξ′′

)
, u (x−, ξ) = u−, u (x+,ξ) = u+. (37)

The right-hand sideF is a random source field andν is a space-dependent random diffusion coefficient modeled
as

ν
(
x, ξ′

)
= ν0 (x) +

dν∑

k=1

√
σν,k ων,k (x) ξ′k, ξ′ =

(
ξ′1 . . . ξ′dν

)
,

F
(
x, ξ′′

)
= F0 (x) +

dF∑

k=1

√
σF,k ωF,k (x) ξ′′k , ξ′′ =

(
ξ′′1 . . . ξ′′dF

)
, (38)

with ν0 (x) = 1 andF0 (x) = −1 the respective mean values. The random variables
{
ξ′1, . . . , ξ′dν

, ξ′′1 , . . . , ξ′′dF

}
are chosen mutually independent and uniformly distributed on[0, 1]. The spatial modesων,k (x) andωF,k (x), and
their associated amplitude

√
σν,k and

√
σF,k, are the first dominant eigenfunctions of the following eigenproblems:

∫

Ω

Kν (x, x′) ων,k (x′) dx′ = σν,k ων,k (x) , Kν (x, x′) = σ2
ν e−[(x−x′)2

/2 L2
c,ν],

∫

Ω

KF (x, x′) ωF,k (x′) dx′ = σF,k ωF,k (x) , KF (x, x′) = σ2
F e−[(x−x′)2

/2 L2
c,F ], (39)

with Kν andKF the correlation kernels. The random fields properties are chosen asσν = 0.7, σF = 0.7, Lc,ν = 0.3,
LF,ν = 0.3. Note thatF

(·, ξ′′) < 0 a.e. andν
(·, ξ′) > 0 a.e. so that the problem remains coercive. The spectra of

the operators associated with these eigenproblems are here the same and decay quickly thanks to the high correlation
length as can be appreciated from Table 1 where the dominant eigenvalues are given. The resulting problem is then
anisotropic inΞ in the sense that the degree of dependence of the input random parameters along the dimensions
{ξ1, . . . , ξ8} strongly varies.
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TABLE 1: Upper part of the spectrum of both eigenproblems (39)

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

0.1815 0.1396 0.0906 0.0450 0.0236 0.0097 0.0035 0.0011

Denotingξ =
(
ξ′ ξ′′

) ∈ Rd, d = dν +dF , the solutionu is approximated in a rank-N separated form:u (x, ξ) ≈
û (x, ξ) = w0 (x) +

∑N
n=1 wn (x) λn (ξ). The stochastic approximation basis relies on an HDMR format with a

maximum interaction orderNl = 3 and 1D Legendre polynomials{ψα}p
α=1 of maximum degreep = 8.

In this section, the focus is on approximating a purely random quantity, i.e., disregarding its spatial dependence.

We then rely on samples of the solutionu (x, ξ) taken at a given spatial locationx?:
{

u(q) := u
(
x?, ξ(q)

)}Nq

q=1
.

5.1.1 Influence of the Number of Samples

We first focus on the achieved accuracy in the approximation with a given budgetNq + N̂q samples. The number of
test pointsÑq to estimate the approximation errorε, Eq. (26), is chosen sufficiently large so thatε is well estimated,
Ñq = 10, 000. In Fig. 2, the performance of the present gLARS-ALS methodology is compared with both a plain
HDMR approximation, i.e., with no subset selection hence considering the wholea priori approximation basis, and a
PC approximation with a sparse grid technique. The Smolyak scheme associated with a Gauss-Patterson quadrature
rule is used as the sparse grid, with varying number of points in the 1D quadrature rule and varying levels. The
dimensionality of the stochastic space isd = 8.

The sparse grid is seen to require a large number of samples to reach a given approximation accuracy.6 The
HDMR-format approximation, with various interaction ordersNl, provides a better performance than PC/Smolyak but

 1e-06
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 0.0001

 0.001

 0.01

 100  1000  10000  100000  1e+06

ε

Nq + Nq
^

PC/Smolyak Nl = 1
PC/Smolyak Nl = 2
PC/Smolyak Nl = 3

HDMR Nl = 1
HDMR Nl = 2
HDMR Nl = 3

gLARS-ALS Nl = 3

FIG. 2: Convergence of the approximation with the number of samplesNq + N̂q. Different approximation methods
are compared: plain HDMR, PC/Smolyak scheme sparse grid spectral decomposition, and the present gLARS-ALS.
The convergence is plotted in terms ofε. d = 8, p = 8, Nl = 3, N

(PC)
l = 3.

6Note that the plain Smolyak scheme is used here, which does not exploit anisotropy in the response surface. More sophisticated
Smolyak-based approximations have been developed, see [7], and are expected to provide better results.
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still requires more points to reach a given accuracy than the present gLARS-ALS method which performs significantly
better in approximating the QoI from a given dataset. The gLARS-ALS approximation error is also seen to be smooth
and monotonic when the amount of information varies. WhenNq is large enough, the subset selection step becomes
useless as all|Jprior| terms of thea priori basis can be evaluated from the large amount of information and the
gLARS-ALS performance is then similar to that of the HDMR. Note that the benefit of a subset selection step in
terms of accuracy improvement increases with the dimensiond as the size|Jprior| of the potential dictionary then
grows.

5.1.2 Influence of the Stochastic Dimension

The approximation accuracy of the present method is now studied when the dimension of the stochastic space varies.
The same problem as above is considered but with various truncation orders of the sourceF and the diffusion coef-
ficient ν definitions, see Eq. (38). The solution of the diffusion problem (37) is of dimensiond = dF + dν and the
dimensionsdF anddν are varied together,dF = dν. The resulting approximation error is plotted in Fig. 3 for different
d when the number of available samples varies. Fromd = 8 to d = 40, the required number of points for a given
accuracy is seen to increase significantly, between a 2- and a 10-fold factor. However this is much milder than the
increase in the potential approximation basis cardinality, i.e., if not subset selection was done, as|Jprior| shifts from
10, 565 (d = 8) to 1.7× 106 (d = 40), demonstrating the efficiency of the subset selection step which activates only
a small fraction of the dictionary. Whend further increases from 40 to 100 for a givenNq, the performance remains
essentially the same with hardly any loss of accuracy: T he solution method is able to capture the low-dimensional
manifold onto which the solution essentially lies and an increase in the size of the solution space hardly affects the
number of samples it requires. This capability is a crucial feature when available data are scarce and the solution
space is very large. As an illustration, whend = 100, and with the parameters retained, the potential cardinality of
the approximation basis is about27 × 106 while the number of available samples isO (100− 10, 000). It clearly
illustrates the pivotal importance of the subset selection step. Note that if one substitutes a PC approximation to the
present HDMR format, about352× 109 terms need be evaluated with the present settings, a clearly daunting task.
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FIG. 3: Convergence of the approximation with the number of samplesNq + N̂q and for different dimensionality of
the QoI. The present gLARS-ALS approach is compared with a CANDECOMP-PARAFAC-type technique (labeled
“CP”).
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For sake of completeness, the approximation given by a CP format, Eq. (12), is also considered. The univariate
functions{fi,r} are approximated with the same polynomial approximation as in the present gLARS-ALS approach
and a Tikhonov-based regularized ALS technique is used to determine eachfi,r in turn given the others. Upon con-
vergence, the next set of modes{f1,r+1, . . . , fd,r+1} is evaluated until a maximum ranknr set by cross validation.
At each rankr, the best approximation, as estimated by cross validation, is retained from a set of initial conditions
and regularization parameter values. As can be appreciated from Fig. 3, the number of samples required for a given
approximation error is significantly larger than with the present gLARS-HDMR method.

5.1.3 Subset Selection

To further illustrate the subset selection step, the set of second- and third-order interaction retained modes{fγ}γ∈Jf,post

are plotted in Fig. 4 in thed = 40 case. Each bullet represents one of thed stochastic dimensions and each line con-
nects two (2nd order, left plot) or three (3rd order, right plot) dimensions, denoting a retained mode. The firstdF = 20
of the 40 dimensions are associated with the source termF in the stochastic equation and are represented as the
solid bullets of the first two quadrants,d ∈ [1, 20]. The otherdν = 20 dimensions are associated with the uncertain
diffusion coefficientν and are plotted as open bullets in the third and fourth quadrants,d ∈ [21, 40]. The dimensions
introduced by these two quantities are sorted with the associated magnitude of the eigenvaluesσF andσν of their
kernel, see Eqs. (39), which decreases along the counterclockwise direction. Hence, the norm of the eigenvalues of
the kernel associated withF decreases when one goes counterclockwise from the first to the second quadrant. Like-
wise, the norm of the eigenvalues associated with dimensions introduced byν decreases from the third to the fourth
quadrant. Dominant dimensions of the stochastic space for the outputu approximation are thus expected to lie at the
beginning of the first and/or third quadrant.

From the plot of second-order modes (left), the subset selection process is seen to retain interaction modes mainly
associated with dominant eigenvalues of bothF andν: they mainly link bullets from the first (dominant) dimensions
associated withF to the first (dominant) dimensions associated withν, as one might expect. Further, modes associated
with two dimensions both introduced byν are seen to be selected while two dimensions both associated withF are
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FIG. 4: Graphical representation of the interaction modes retained by the subset selection procedure. Left: second-
order modes are plotted as a line linking two dimensions (bullets). Right: third-order modes are represented as 3-
branch stars and connect three dimensions.
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rarely connected: the subset selection procedure is able to capture the nonlinearity associated withν in the QoI and
retains corresponding interaction modes. Indeed, note from Eq. (37) that the source termF interacts linearly with the
solutionu while the diffusion coefficient is nonlinearly coupled withu and hence, interaction modes between two
dimensions introduced byF do not contribute to the approximation. The third-order modes (right plot) also illustrate
the nonlinearity associated withν: The retained modes either connect dimensions associated withν only or with one
F -related and twoν-related dimensions. Again, no two dimensions ofF are connected, consistently with the linear
dependence ofu with F . These results illustrate the effectiveness of the procedure to unveil the dominant dependence
structure and to discard unnecessary approximation basis functions.

5.1.4 Robustness

The robustness of the approximation against measurement noise is now investigated. The dataset is corrupted with
noise. Denoting the nominal value with a star as superscript, noise in the coordinates is modeled as

ξ(q) = ξ(q)?
+ s ζ(q), ∀ 1 ≤ q ≤ Nq, s > 0. (40)

The noise is modeled as an additived-dimensional, zero-centered, unit variance, Gaussian random vectorζ biased
so thatξ(q) ∈ [−1, 1]d, ∀ q. It is independent from one sampleq to another. Without loss of generality, measurements

are here modeled as being corrupted with a multiplicative noise:u(q) = u(q)?
(
1 + su ζ

(q)
u

)
, with su = 0.2 and

ζu ∼ N (0, 1).
The evolution of the approximation accuracy when the noise intensitys in the coordinates varies is plotted in

Fig. 5 in terms of error estimationε. We compare gLARS-ALS using standard least squares (LS) with its “robust”
counterpart relying on weighted total least squares (wTLS) as discussed in Section 4.6.

When the noise intensity increases, the error exponentially increases, quickly deteriorating the quality of the
approximation with a noise standard deviation here as low ass = 3 × 10−5. When the noise is strong (low signal-
to-noiseratio), both the LS and the wTLS methods achieve poor accuracy. However, if the dataset is only mildly

 0.0001

 0.001

 1e-05  0.0001  0.001

ε

s

LS
wTLS

FIG. 5: Robustness of the approximation with respect to noise in the data: approximation errorε from the standard
least squares (LS) and weighted total least squares (wTLS).d = 5, Nq = 500.
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corrupted with noise, the wTLS approach is seen to achieve a significantly better accuracy than the standard LS,
while the solution process is significantly slower than that using the standard LS. The present paper is based on the
assumption that the critical part of the whole solution chain of determining a good approximation of the QoI is the
data acquisition and that the cost of the post-processing part is not the main issue. However, while it is useful only
on a range of SNR and somehow computationally costly, this feature is deemed important for a successful solution
method in an experimental context where noise is naturally present.

If the noisy dataset is unbiased, possible further improvements upon the wTLS approach include lowering the
complexity of the approximation model. Indeed, the well-known bias-variance tradeoff indicates that a more robust,
while less accurate, approximation can be obtained when the complexity of the retained model decreases. To improve
the robustness of our present approach, a natural way is hence to trade some accuracy for some additional robustness.
For instance, a predictor selection within each retained groups

{
fγ∈Jf,post

}
can be considered, further lowering the

final number of coefficients involved in the approximation and likely improving its robustness with respect to noise
in the data. This could be achieved by estimating the approximation coefficients via apenalized(total) LS problem as
mentioned in Section 2.2.2.

5.1.5 Scaling of the Solution Algorithm

In this section, the numerical complexity associated with the different steps of the solution method is illustrated in
terms of computational time. Numerical experiments are carried out with varying number of samplesNq and solution
space dimensionsd. When one is varying, the other remains constant. The nominal parameters ared = 40 (dimension
of the stochastic space),p = 6 (maximum total order of the Legendre polynomials),Nq = 1000 (number of samples),
Nl = 3 (maximum interaction order of the truncated HDMR approximation),p̃ = 5 (maximum total polynomial
order in the subset selection step).

Numerical results are gathered in Fig. 6. The asymptotic behavior of the numbernf of required subset selection
iterations as introduced in Section 4.7 might be different according to which limit is considered. For the present
stochastic diffusion problem, first and second interaction order modes tend to be selected first. Assuming the active
setJf,post is dominated by first and second interaction order modes, it can easily be shown that the number of retained
groups then satisfies
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FIG. 6: Numerical cost of the subset selection and coefficients evaluation steps as a function of the stochastic di-
mensiond and size of the datasetNq. Approximation coefficients are fully updated for each new mode. Nominal

parameters ared = 40, p = 6, Nq = 1000, Nl = 3, p̃ = 5, N
(PC)
l = 3.
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nf ≤ 1 + nf1 + min

[
d (d− 1)

2
, 2

Nq − nf1 p̃

p̃ (p̃ + 1)

]
, nf1 ≤ min

[
d,

Nq

p̃

]
. (41)

In the present example, second-order interaction groups dominate the retained set so that the number of retained
groups tends to scale asnf ∝ Nq/p̃2. From Eq. (33) and for the present nominal parameters, it results in the following
limit behavior for the subset selection step:

lim
d→+∞

Jsubsel ∝ Nq
2 |Jprior|/p̃2 −→ here : ∝ Nq

2 dNl p̃Nl−2,

lim
Nq→+∞

Jsubsel ∝ Nq
2 |Jprior|/p̃2 −→ here : ∝ Nq

2 dNl p̃Nl−2. (42)

Similarly, the cost associated with the coefficients evaluation is considered. The number of interaction modes
Jf,eff effectively varies between1 andO (

Nq/p2
)

along the solution procedure, and, since the cost associated with
solving the LS problem dominates that of the matrix assembly, the cost of their evaluation finally simplifies inJcoef ∝
O (

Nq
2 p

)
or Jcoef ∝ O (

Nq
3/p

)
depending on whether the coefficients are updated whenever an additional group

is considered or not, see Section 4.5 and step (7) in Algorithm 1. In the present regime, the cost is found not to depend
ond.

These asymptotic behaviors are consistent with the numerical experiments as can be appreciated from Fig. 6. The
coefficients are here updated whenever a new mode from the selected set is considered, henceJcoef ∝ O (

Nq
3/p

)
. It

is seen that the subset selection step scales less favorably than the coefficients evaluation step with the dimensionality
of the random variable. This stresses the benefit of a carefully chosena priori approximation basis to reduce as much
as possible the cardinality|Jprior|.

5.2 Approximation of the Solution Random Field

We now consider the approximation of the space-dependent random solutionu (x, ξ) under the form (35) using

Algorithm 2. The approximation obtained from different number of samples
{

x(q), ξ(q), u(q)
}

is compared with the

Karhunen-Lòeve modes, computed from a full knowledge of the QoI, hereafter referred to as the reference solution.7

The simulation relies on the following parameters:|Jx| = 32, p = 10, d = 6, Nl = 3, N
(PC)
l = 3. The potential

approximation basis cardinality is about|Jx| |Jprior| ' 105. Fig. 7 shows the first and second spatial modes,w1 (x)
andw2 (x) for different sizes of the dataset,Nq = 1000, 3000, 9000, and26, 000. The mean modew0 (x) is virtually
indistinguishable from the reference solution mean mode for any of the dataset sizes and is not plotted. On the left
plot [w1 (x)], it is seen that the approximation is decent, even with as low asNq = 1000 samples. ForNq = 3000,
the approximation is good. This(1 + d) = 7-dimensional case corresponds toNq

1/(1+6) ' 3.1 samples per solution
space dimension only and aboutNq/ (|Jx| |Jprior|) ' 3% of the potentially required information.

For approximating the second spatial mode (Fig. 7, right plot), more points are needed to reach a good accuracy
butNq = 26, 000 is seen to already deliver a good performance. Quantitative approximation error results are gathered
in Table 2 for various separation ranksN and number of samplesNq.

The satisfactory performance of the present method can be understood from the upper part of the Karhunen-Loève
approximation (normalized) spectrum plotted in Table 3. The norm of the eigenvalues decays quickly so that the first
two modes contribute more than 90% of the QoIL2-norm, showing that this problem efficiently lends itself to the
present separation of variables-based methodology.

7The spatial{wn} and stochastic modes{λn} are sequentially determined from (36) via an ALS approach. Since the decompo-
sition is two-dimensional,u (x, ξ) ≈ ∑N

n=0 wn (x) λn (ξ), the approximation problem is convex, see for instance [46], and
the ALS approach converges to the best rank-1 approximation of the matricizedu in the Frobenius sense. If the data-driven inner
product〈·, ·〉Nq

was inducing a cross norm (it only induces a semi-norm), then〈w λ, w λ〉Nq
= ‖w‖22 ‖λ‖22 and the pair(w, λ)

would be the dominant rank-1 approximation of the matricizedu. The Karhunen-Lòeve decomposition ofu is thus the reference
solution one should obtain in the particular case where the empirical inner product induces a cross norm andNq →∞.
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FIG. 7: First [w1 (x), left] and second [w2 (x), right] spatial approximation modes of the stochastic diffusion solution.
The reference (Karhunen-Loève) solution is plotted for comparison (thick line).

TABLE 2: Evolution of the approximation errorε, as
defined in Eq. (26), with the decomposition rankN and
the number of samplesNq

Nq \ N 0 1 2
1000 5.5× 10−3 7.4× 10−4 7.4× 10−4

3000 5.5× 10−3 4.2× 10−4 2.7× 10−4

9000 5.5× 10−3 3.1× 10−4 1.0× 10−4

26,000 5.4× 10−3 2.8× 10−4 6.2× 10−5

TABLE 3: Normalized upper spectrum of the Karhunen-Loève approximation

i 1 2 3 4 5 6 7 8 9 10
σi 144 30.2 13.6 2.64 1.37 0.250 0.0817 0.0167 0.00891 0.00232

5.3 A Shallow Water Flow Example

The methodology is now applied to the approximation of the stochastic solution of a shallow water flow simulation
with multiple sources of uncertainty. It is a simple model for the simulation of wave propagation on the ocean surface.
Waves are here produced by the sudden displacement of the sea bottom at a given magnitude in time, extension, and
location, all uncertain.

5.3.1 Model

The problem is governed by the following set of equations:

D v1

D t
= fC v2 − g

∂h

∂x1
− b v1 + Sv1 , (43)

D v2

D t
= −fC v1 − g

∂h

∂x2
− b v2 + Sv2 , (44)
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∂h

∂t
= −∂ (v1 (H + h))

∂x1
− ∂ (v2 (H + h))

∂x2
+ Sh, (45)

where(v1 (x, ξ, t) v2 (x, ξ, t)) is the velocity vector at the surface,x = (x1 x2) ∈ Ω ⊂ R2, h (x, ξ, t) the elevation
of the surface from its position at rest,H (x) the sea depth,fC models the Coriolis force,b is the viscous drag
coefficient,g the gravity constant andSv1 (x, ξ, t), Sv2 (x, ξ, t), Sh (x, ξ, t) are the source fields. Without loss of
generality, the dragb and the Coriolis forcefC are neglected. No slip boundary conditions apply for the velocity. The
sources are modeled as acting onh only, Sv1 ≡ 0 andSv2 ≡ 0. Sh models the source term acting onh due to, say, an
underwater seismic event. The fluid density and the free surface pressure are implicitly assumed constant. Full details
on the numerical implementation of a similar problem are given in [47].

5.3.2 Sources of Uncertainty

Let ξ =
(
ξ′ ξ′′

)
. The sourceSh is uncertain and is modeled as a time-dependent, spatially distributed quantity:

Sh (x, ξ, t) = at

(
ξ′, t

)
aξ (ξ′′1) exp

(
− (x− xSh

(ξ′′3))T (x− xSh
(ξ′′3))

σSh
(ξ′′2)2

)
, (46)

whereat

(
ξ′, t

)
is a given time envelope,aξ (ξ′′1) the uncertain source magnitude,σSh

(ξ′′2) drives the uncertain
source spatial extension, andxSh

(ξ′′3) is the uncertain spatial location. The time envelopeat

(
ξ′, t

)
is described with

anNa-term expansion:

at

(
ξ′, t

)
= at (t) +

Na∑

i=1

√
λi ξ′i (θ) ϕat

i (t), (47)

with ξ′ =
(
ξ′1 . . . ξ′Na

)
the stochastic germ associated with the uncertainty inat. Random variables{ξ′i}Na

i=1 areiid,
uniformly distributed. The solution of the shallow water problem then lies in a(d = Na + 3)-dimensional stochastic
space.

5.3.3 Approximation from an Available Database

As an illustration of the methodology, we aim at approximating the sea surface field at a fixed amount of timet?

after a seismic event. The QoI is then a random fieldu (x, ξ) = h (x,ξ, t?). An accurate description of this field is
of importance for emergency plans in case of a seaquake. Sea level measurements of the surface at various spatial

locations from past events constitute the dataset
{

x(q), ξ(q), h
(
x(q), ξ(q), t?

)}Nq

q=1
used to derive an approximation

of u under a separated form:u (x, ξ) ≈ 〈u〉Nq
(x) +

∑N
n=1 wn (x) λn (ξ).

The solution method here relies on aNq = 37, 000-sample dataset complemented witĥNq = 5000 cross-
validation samples and ãNq = 5000 set for error estimation. We consider aNa = 5 expansion for the time envelope,
leading to a stochastic dimension ofd = 5 + 3 = 8. The effective number of samples per dimension is then about
Nq

1/(dx+d) ' 2.9. The approximation is determined based on a|Jx| = 484 spatial discretization DOFs (spectral

elements) at the deterministic level andp = 6th order Legendre polynomials{ψα}, Nl = 3, N
(PC)
l = 3, for the

stochastic modes. The cardinality of thisa priori basis is then|Jx| |Jprior| ' 770 × 103 À Nq, again relying on an
efficient subset selection step to make the approximation problem well-posed.

The approximation error when the rankN varies is shown in Table 4. It is seen that estimating the mean spatial
modew0 leads to a relative error of about0.12 while adding the first(w1, λ1) and second(w2, λ2) pair drops it
to about0.05. Further adding pairs does not lower the approximation error with this dataset and more samples are
needed to accurately estimate them. Spatial modesw0 andw1 of the separated approximation are plotted in Fig. 8 for
illustration.
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TABLE 4: Relative approximation error
ε evolution with the decomposition rank
N . Nq = 37,000

N 0 1 2 3
ε 0.117 0.056 0.046 0.044
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FIG. 8: Mean [w0 (x) ≡ 〈u〉Nq
(x), left] and first [w1 (x), right] spatial modes.

6. CONCLUSION

In this paper, a methodology was proposed for deriving a functional representation of a random process only known
through a collection of its pointwise evaluations. The proposed method essentially relies on an efficient determination
of an approximation basis consistent with the available information. This involves the choice of ana priori canonical
HDMR format combined with tuning the basis via a data-driven subset selection step. This subset selection is carried
out in a bottom-to-top manner, as opposed to a top-to-bottom manner as done in the compressed sensing standard
framework. It essentially sorts the HDMR modes (groups of predictors) by their contribution in approximating the
quantity of interest. The final approximation can rely on a different functional description of the modes, typically of
higher order and/or nonlinear in the coefficients.

The method is progressive, data-driven, and was shown to here outperform current approximation techniques
in terms of accuracy for a given number of samples. Its efficiency was demonstrated in two examples which have
shown its ability to achieve a good approximation accuracy from a small dataset, as long as the quantity at hand is
essentially lying on a low-dimensional manifold. In particular, the dominant dimensions are naturally revealed so that
all the available information can be dedicated to approximate relevant dependences only. Through a total least squares
approach, it was also shown that some robustness can be achieved, an important feature if the dataset comes from
experiments. Using a robust approximation was shown to bring up to a twofold improvement upon the approximation
error using standard least squares, but at the price of a computational overhead. The global solution method scales
reasonably well, exhibiting a linear dependence with the cardinality of thea priori basis dictionary and a quadratic or
cubic dependence with the number of samples, depending on the coefficients update strategy.

The present work was focused on a general methodology, disregarding fine-tuning aspects. Among other things,
a natural improvement would be to carry out a predictor selection within each retained groups

{
fγ∈Jf,post

}
, further

lowering the number of coefficients involved in the approximation. Moreover, the tensor structure of the Hilbert
stochastic space can be exploited and developments towards a data-driven multilinear algebra effective tool for high-
dimensional uncertainty quantification are currently carried out.
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18. Rabitz, H. and Alış, O., General foundations of high-dimensional model representations,J. Math. Chem., 25:197–233, 1999.
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APPENDIX A. A MOTIVATING EXAMPLE

To assess the choice of oura priori functional form for approximating a random variable, and while choosing a good
basis is problem-dependent, let us consider a simple motivating example in the form of the 1D stochastic diffusion
equation presented in Section 5.1, briefly recalled here for sake of convenience:

∇x (ν (x, ξ) ∇xu (x, ξ)) = F (x, ξ) , u (x−,ξ) = u−, u (x+,ξ) = u+. (A.1)

The solutionu is approximated under a separated formatu (x, ξ) ≈
N∑

n=0

wn (x) λn (ξ). The approximation

space for the spatial modes{wn (x)} is given and we here focus on the accuracy of the approximation with dif-
ferent representations for the stochastic modes{λn (ξ)}. Each stochastic mode is determined either in a CP-like
format, Eq. (12), or as an HDMR decomposition Eq. (13). In the latter case, interaction modes{fγ} are approximated
with a low-rank canonical decomposition on tensorized, unit-normed, univariate polynomials of maximum degreep:

fγ

(
{ξi}i∈γ

)
≈ ∑nr

r=1

∏
i∈γ

∑p
α=2 cr,i

γ,α ψα (ξi). This approximation is hereafter referred to as a CP-HDMR de-

composition. Similarly, univariate functions{fi,r}d
i=1 involved in the CP decomposition Eq. (12) are approximated

with the same polynomials:fi,r (ξi) ≈
∑p

α=1 cα,i,r ψα (ξi).
The representation of the stochastic modes here relies onp = 8th-order univariate Legendre polynomials{ψα}.

The dimension of the problem is chosen to bedν = dF = 5 so thatd = 10.
The CP-HDMR expansion is here built sequentially, starting with 0th and first-order interaction modes only. From

this first approximation of the output, the set of dominant dimensions is estimated from theL2-norm of univariate
interaction modes{fγ}|γ|=1. Only second-order interaction modes{fγ}|γ|=2 in these dominant dimensions are next
estimated and the set of dominant dimensions is then further refined based on both first and second-order interaction
modes via the sensitivity Sobol indices, see Appendix B. Third-order modes are then computed for this new set of
dominant dimensions only and the procedure is repeated until some stopping criterion is met, for instance a maximum
interaction orderNl or a maximum basis cardinality|J |. The number of samplesNq is here chosen sufficiently
large so that full knowledge ofu can be assumed. The approximation error then only comes from the choice of the
approximation basis format, allowing a comparison. This section is loose on details, focusing on the main conclusions
and leaving more in-depth discussion for main text sections.

First, the accuracy of the CP-HDMR approximation as a function of the decomposition rankN is studied in terms
of ε, Eq. (26). Plotted in Fig. A.1, the approximation error estimationε decreases when the maximum interaction
orderNl increases from 1 to 3 and as the decomposition rankN increases.

The approximation is seen to improve exponentially fast as the number of modesN in the separated representation
increases until it reaches a plateau. Increasing the interaction order leads to an improved approximation: increasing
from first to second order brings more than a one-order-of-magnitude improvement in the approximation error esti-
mation and an additional order of magnitude fromNl = 2 to Nl = 3. In this d = 10 example, the approximation
hence exhibits a high convergence rate withNl, supporting our assumption that low-order interactions dominate the
HDMR decomposition.

This CP-HDMR approximation of the stochastic modes is now compared with a CP-like approximation in the
form of Eq. (12). To evaluate the CP decomposition, we use an algorithm similar to that in [3]. Both decompositions
rely on the same approximation basis for the deterministic modes{wn}. We focus on the accuracy of the recon-
struction as a function of the cardinality of the whole approximation basis both ford = 10 andd = 40 when the
maximum decomposition rankN varies, see Fig. A.2. The total cardinality increases as more terms are considered in
the decomposition series.

The accuracy of the representation is seen to improve as more terms are considered in the series expansion and both
the CP and the CP-HDMR formats exhibit an exponential convergence with the total size|J | of the decomposition.
The first-order CP-HDMR quickly reduces the error but plateaus as the functional space is small. The third order CP-
HDMR decomposition is more costly in number of coefficients to evaluate to reach a given error and, in the present
settings, should only be considered if high accuracy is needed.
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FIG. A.1: Convergence of the error estimation of the approximation with the orderN of the separated representation
and the maximum interaction orderNl of the HDMR expansion.
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FIG. A.2: Convergence of the approximation error estimationε with the total cardinality|J | of the representation
basis. Approximations of the stochastic modes with the CP-HDMR and CP-like format are compared.d = 10 (left)
andd = 40 (right).

Unless the targeted accuracy is really high, this motivating example tends to indicate that, for a reasonable required
accuracy, a CP-HDMR format involves fewer unknowns than a CP-like decomposition, both for a lowd = 10-
and a moderated = 40-dimensional problem. This is an important point since the number of coefficients which
can be evaluated with a reasonable accuracy from experimental data is directly related to the size of the available
dataset. Finally, a CP-HDMR format allows a great flexibility in representing interaction modes{fγ}. In particular,
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a more parsimonious representation is used in the main text and achieves a similar accuracy with a lower number of
terms.

APPENDIX B. STATISTICS AND SENSITIVITY ANALYSIS

Once an approximation of a random variableu (ξ) is obtained, it is easy to estimate its first statistical moments.
From the HDMR format properties, the estimated mean is simply given by the first term of the decomposition:
〈u〉L2(Ξ, µΞ) ' f∅.

Thanks to the orthogonality property of the modes{fγ}, the varianceVar (u) :=
〈(

u− 〈u〉L2(Ξ, µΞ)

)2
〉

L2(Ξ, µΞ)

approximates as the sum of the variance of the individual interaction modes:

Var (u) '
∑

γ∈Jf,eff\∅
Var

(
f̂γ

)
,

=
∑

γ∈Jf,eff\∅
|γ|≤N

(PC)
l

∑

α,|α|≤p

c2
γ,α ‖ψα‖2L2(Ξ, µΞ) +

∑

γ∈Jf,eff\∅
N

(PC)
l <|γ|≤Nl

nr(γ)∑

r,r′=1

∏

i∈γ

p∑
α=1

cr,i
γ,α cr′,i

γ,α ‖ψα‖2L2(Ξ, µΞ), (B.1)

where use was made of the orthogonality of the Hilbertian basis{ψα}.
Other standard statistical quantities are the sensitivity indices{Sγ} := Var

(
f̂γ

)
/ Var (û) which essentially

represent the relative part of the variance of the QoI due to the interaction of a given set of input random variables
only, [48, 49]. From Eq. (B.1), it immediately follows that

∑
γ⊆{1,...,d}\∅ Sγ = 1 and the explicit expression of the

sensitivity indices is straightforward to derive from the HDMR format. In practice, it is often more useful to assess
the influence of a given input onto the variance of the QoI with the total sensitivity indices{ST,i}d

i=1:

ST,i :=

∑
γ⊆{1,...,d}\∅: i∈γ Var

(
f̂γ

)

Var (û)
, 1 ≤ i ≤ d. (B.2)

Again, using Eq. (B.1), this quantity is straightforward to estimate once the approximation ofu (ξ) is available.
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