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For civil structures, structural damage due to severe loading events such as earthquakes, or due to long-term environ-
mental degradation, usually occurs in localized areas of a structure. A new sparse Bayesian probabilistic framework for
computing the probability of localized stiffness reductions induced by damage is presented that uses noisy incomplete
modal data from before and after possible damage. This new approach employs system modal parameters of the structure
as extra variables for Bayesian model updating with incomplete modal data. A specific hierarchical Bayesian model is
constructed that promotes spatial sparseness in the inferred stiffness reductions in a way that is consistent with the
Bayesian Ockham razor. To obtain the most plausible model of sparse stiffness reductions together with its uncertainty
within a specified class of models, the method employs an optimization scheme that iterates among all uncertain pa-
rameters, including the hierarchical hyper-parameters. The approach has four important benefits: (1) it infers spatially
sparse stiffness changes based on the identified modal parameters; (2) the uncertainty in the inferred stiffness reductions
is quantified; (3) no matching of model and experimental modes is needed, and (4) solving the nonlinear eigenvalue
problem of a structural model is not required. The proposed method is applied to two previously studied examples using
simulated data: a ten-story shear-building and the three-dimensional braced-frame model from the Phase II Simulated
Benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring. The results show
that the occurrence of false-positive and false-negative damage detection is clearly reduced in the presence of modeling
error (differences between the real structural behavior and the model of it). Furthermore, the identified most probable
stiffness loss ratios are close to their actual values.

KEY WORDS: dynamical system, inverse problem, hierarchical sparse Bayesian learning, damage detec-
tion, structural health monitoring, Bayesian Ockham razor, IASC-ASCE simulated Benchmark problem

1. INTRODUCTION

With the general goal of improving the safety and reducing life-cycle costs of critical civil infrastructure, structural
health monitoring (SHM) has attracted increasing research interest in the structural engineering community over
the last three decades [1–7]. The interest is in developing automated sensor-based systems for accurately detecting,
locating and assessing earthquake-induced structural weakening (or damage from other severe loading events such as
hurricanes, impacts or explosions, or from progressive structural deterioration at an early stage in its evolution). The
most important objective of a damage identification algorithm is to reliably issue an alarm if damage has occurred. An
alarm is generally issued if some damage features shift from their healthy state values, which usually is determined
by a damage index obtained from an unknown state of the structure deviating from the healthy state beyond some
threshold. Defining a proper threshold is the critical challenge to establish a timely and reliable damage alarm [8,
9].
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NOMENCLATURE

m number of extracted modes in the
modal identification

s number of measured degrees of freedom
d number of degrees of freedom of

the identification model
q number of time segments of

measured modal data
n number of substructures considered
M , K mass and stiffness matrices of

structural model
θ structural stiffness scaling parameter vector
φi, ω

2
i system mode shape vector and

system natural frequency of theith mode
β equation-error precision parameter
ω̂2

r,i, ψ̂r,i MAP estimates of system natural
frequency and mode shape vector
of theith mode from therth
data segment from modal identification

θ̂u MAP estimate ofθ determined
from the calibration test data

Γ matrix that picks the measured degrees
of freedom from the system mode shape

T transformation matrix between the
vectors ofq sets of identified natural
frequenciesω̂2 and the system natural
frequenciesω2

α prior variance parameter vector for
structural stiffness scaling parametersθ

η, ρ measurement-error precision parameters
for mode shapes and natural frequencies

ν, τi, λ, ζ rate parameters controlling the exponential
prior distributions ofη, ρi,αj , λ,
respectively

δ
[
αT , λ, ζ

]T

ξ
[
β,

(
ω2

)T
, ρ, τ,φT , η,ν

]T

False indication of damage falls into two types [10]: (1) false-positive damage indication, which means that the
algorithm indicates damage although no real damage is present; (2) false-negative damage indication, which means
that the algorithm does not detect real damaged components, i.e., reports them as undamaged. False-negative detection
is usually more critical because undetected damaged elements may lead to severe consequences, even resulting in
structural collapse. On the other hand, false-positive detections can needlessly heighten concern about safety, and
lead to costly visual inspections by engineers. Recently, some researchers have investigated how to compute a proper
threshold value in a rigorous manner in order to alleviate false-positive (false alarm) and false-negative (missed alarm)
detections [8, 11]. However, novel methods still need to be explored for better damage alarm performance.

Another challenge for structural damage detection is that existing methods often require measurement information
at locations corresponding to every degree of freedom (DOF) of a model of the structure, whereas, in reality, sensors
are typically installed at only a limited number of locations, so the spatial distribution of the structural motion is not
known completely. Therefore, it is impossible to exactly describe the current state of the structure by the limited infor-
mation available in practice, and we have a state of uncertainty that can be better described probabilistically. Rather
than considering only a point estimate for the model parameters, Bayesian inference considers all possible values of
the parameters and explicitly treats modeling uncertainty, including quantification of parametric uncertainty, by treat-
ing the problem within a framework of plausible inference in the presence of incomplete information. Therefore, it
provides a promising way to locate structural damage, which may occur away from the sensor locations or be hidden
from sight. Furthermore, being able to quantify the uncertainties of the structural model parameters accurately and ap-
propriately is essential for a robust prediction of future safety and reliability of the structure. The Bayesian framework
has been used previously for damage detection and assessment [2, 3, 12–18].

In this article, we explore recent developments in sparse Bayesian learning [19–22] and Bayesian compressive
sensing [23–25] to perform sparse stiffness loss inference based on changes in the identified modal parameters from
the sensor data. The physical basis for exploring sparseness in this inverse problem (i.e., inferring stiffness losses due
to damage based on dynamic sensor data) is that the damage induced by an earthquake typically occurs at a limited
number of locations (in the absence of collapse). This is important prior information that can be exploited.

We have proposed previously to use a sparse Bayesian learning approach to tackle this stiffness inversion problem
in which a specific hierarchical Bayesian model is employed that induces sparseness in order to improve the accuracy
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and robustness of damage detection and assessment [26]. This approach employs an optimization scheme that iterates
among all uncertain parameters to obtain the most plausible values of spatially sparse stiffness reductions together
with their uncertainty, based on the information in the experimentally identified modal parameters from the current
unknown state and the original healthy state. In this paper, we improve the theoretical formulation and illustrate the
ability of the proposed method to update a structural model during a calibration stage for an undamaged building
(Example 1 taken from [18]), and to accurately infer damage in a monitoring stage (Example 2 taken from [27]), by
applying the method to noisy incomplete modal data in both cases.

2. FORMULATION

2.1 Structural Model Class and Target Problem

For a structure of interest, we take a class of linear structural models that hasd degrees of freedom, a known mass
matrixM based on structural drawings and an uncertain stiffness matrixK that is represented as a linear combination
of (n + 1) stiffness matricesK j , j = 0, . . . n, as follows:

K (θ) = K0 +
n∑

j=1

θjK j (1)

where the nominal substructure stiffness matricesK j ∈ Rd×d, j = 1, . . . , n, represent the nominal contribution
of the jth substructure of the structure to the overall stiffness matrixK from a structural model (e.g., based on the
finite-element method), andθ = [θ1, . . . , θn] ∈ Rn are corresponding stiffness scaling parameters that represent the
structural model parameter vector to be updated by dynamic data. The reduction of anyθj , j = 1, . . . , n, corresponds
to damage in thejth substructure. Since structural damage induced by severe loading event, such as an earthquake,
typically occurs at a limited number of locations in the absence of structural collapse,∆θ = θ−θ̂u can be considered
as a sparse vector with relative few non-zero components, whereθ andθu are the stiffness scaling parameters for
current (possibly damaged) and undamaged states, andθ̂u is the MAP (maximum a posteriori) estimate ofθu deter-
mined from the calibration test data. We assume that a linear dynamic model with classical normal modes is adequate
for damage detection purposes because we use low-amplitude vibration data recorded by the structural monitoring
system just before and after an earthquake. Under this hypothesis, a damping matrix need not be explicitly modeled
since it does not affect the model mode shapes.

Suppose thatq sets of measured vibration time histories are available from the structure andm modes of the struc-
tural system have been identified for each set of time histories so that we have a vector of identified (MAP) system nat-

ural frequencieŝω2 = [ω̂2
1,1, . . . , ω̂

2
1,m, ω̂2

2,1, . . . , ω̂
2
q,m]T ∈ Rqm×1 and mode shapeŝψ = [ψ̂

T

1,1, . . . , ψ̂
T

1,m, ψ̂
T

2,1,

. . . , ψ̂
T

q,m]T ∈ Rqms×1, whereψ̂r,i ∈ Rs gives the identified components of the system mode shape of theith mode
(i = 1, . . . ,m) at thes measured DOF from therth data segment (r = 1, . . . , q). These modal parameters are assumed
to be directly estimated from dynamic data using an appropriate modal identification procedure, such as MODE-ID
[15, 28], which does not use a structural model and identifies the MAP values of the natural frequencies, equivalent
viscous damping ratios and mode shape components at the observed degrees of freedom.

The target problem of interest is to use an appropriate sparse Bayesian learning technique for the inverse problem
of inferring the pattern of stiffness loss∆θ from the noisy incomplete modal datâω2 andψ̂, and to then use∆θ

to decide whether to issue a damage alarm without having to set any stiffness loss thresholds. Ideally, we would
like to treat each structural member as a substructure so that we can infer from the dynamic data which, if any,
members have been damaged by the severe loading event. However, the information available from the structure’s
local network of sensors will generally be insufficient to support a member-level resolution of stiffness loss from
damage, so larger substructures may be necessary in order to reduce the number of stiffness scaling parametersθj in
Eq. (1). A tradeoff is therefore required between the number of substructures (and hence the resolution of the damage
locations) and the reliability of the probabilistically inferred damage state. By inducing sparseness in the inferred
stiffness loss through sparse Bayesian learning, we expect higher-resolution damage localization while still producing
reliable damage assessment.
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One complication in applying sparse Bayesian learning is that it requires a model that gives the predicted output
as a linear function of the model parameters for which sparseness is to be enforced but, despite the linearity in
Eq. (1), the model for the modal parameters characterizing the modal dataω̂

2 and ψ̂ is a nonlinear function of
the structural stiffness scaling parameter vectorθ. In the following formulation, rather than directly tackling this
challenging nonlinear inverse problem, we apply an efficient iterative procedure that involves a series of coupled
linear regression problems and so provides an appropriate form for the sparse Bayesian learning method.

2.2 Hierarchical Bayesian Modeling

2.2.1 Priors for System Modal Parameters and Structural Stiffness Scaling Parameters

To represent the actual modal parameters of the structure, we introducesystemnatural frequenciesω2 = [ω2
1, . . . ,

ω2
m]T ∈ Rm×1 and realsystemmode shapesφ =

[
φT

1 , . . . , φT
m

]T ∈ Rdm×1 at the samed degrees of freedom as the
structural model [3]. We do not assume that the system natural frequenciesω2 and system mode shapesφ satisfy the
eigenvalue problem corresponding to any structural model specified by the parametersθ because there will always be
modeling approximations, so: (

K (θ)−ω2
i M

)
φi = ei (2)

where the uncertain eigenvalue equation errorsei ∈ Rd, i = 1, . . . , m, are for theith system mode and the structural
model specified byθ. They are modeled probabilistically as independent and identically distributed Gaussian vectors
with zero mean and covariance matrixβ−1Id = diag

(
β−1, . . . , β−1

)
. This joint probability model fore1, . . . , em

maximizes Shannon’s information entropy (i.e., it gives the largest uncertainty) for the equation errors subject to the

moment constraints:E [(ei)k] = 0, E
[
(ei)

2
k

]
= β−1, k = 1, . . . , d; i = 1, . . . , m [29]. Equation (2) is then used to

create the following prior PDF conditional onβ:

p
(
ω2, φ, θ|β)

= c0

(
2πβ−1

)−dm/2
exp

{
−β

2

m∑

i=1

∥∥(
K (θ)−ω2

i M
)
φi

∥∥2

}
. (3)

wherec0 is a normalizing constant and‖·‖ denotes the Euclidean norm, so‖x‖2 = xT x. Note that the equation-error
precision parameterβ in (3) allows for the explicit control of how closely the system and model modal parameters
agree. However, it is difficult to choose an appropriate value a priori forβ and this motivates the introduction later of
a hierarchical Bayesian prior (see Eq. 8), where an optimal value ofβ is learned from the data. Notice that asβ →∞,
the system modal parameters become tightly clustered around the modal parameters corresponding to the structural
model specified byθ, which are given by Eq. (2) with allei = 0, that is,

(
K (θ)−ω2M

)
φ = 0. Note also that if

θ is specified then these model modal parameters are always the most plausible values a priori of the system modal
parameters.

From (1), we see that the exponent in (3) is a quadratic inθ and so (3) can be analytically integrated with respect
to θ to get the marginal prior PDF for the system modal parameters

[
ω2, φ

]
as:

p
(
ω2,φ|β)

= c0

(
2πβ−1

)−(dm−n)/2 ∣∣HT H
∣∣−1/2

exp
{
−β

2

(
bT b− bT H

(
HT H

)−1
HT b

)}
(4)

where the matrixH and parameter vectorb are defined by:

H =




K1φ1 · · · Knφ1

...
. ..

...
K1φm · · · Knφm




dm×n

, (5)

b =




(
ω2

1M − K0

)
φ1

...(
ω2

m M − K0

)
φm




dm×1

. (6)
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We can then deduce the prior PDF forθ conditional on system modal parameters
[
ω2, φ

]
from (3) and (4):

p
(
θ|ω2,φ, β

)
= p

(
ω2,φ, θ|β)

/p
(
ω2,φ|β)

=
(
2πβ−1

)−n/2 ∣∣HT H
∣∣1/2

exp
{
−β

2

(
θ− (

HT H
)−1

HT b
)T

HT H
(
θ− (

HT H
)−1

HT b
)}

= N
(
θ| (HT H

)−1
HT b,

(
βHT H

)−1
)

(7)
It remains to define a hyper-prior for hyper-parameterβ. We take a Gamma conjugate hyper-prior onβ:

p (β|a0, b0) = Gam (β|a0, b0) =
ba0
0

Γ (a0)
βa0−1exp (−b0β) (8)

Remark 1. The choice of prior PDF in (3) builds on an idea by Yuen et al. [18]. They chose the prior PDF

p
(
ω2, φ|θ, β

)
= c1exp

{
−β

2

m∑

i=1

∥∥(
K (θ)−ω2

i M
)
φi

∥∥2

}

with c1 as a normalizing constant. However, this PDF is not a normalized PDF over the modal parameter space
unlessc1 is a function of the structural model parametersθ and the equation-error precisionβ. Therefore, we do not
have the equivalent of a linear regression equation for the parameter vectorθ and so Bayesian inference, including
the sparse Bayesian learning scheme, is analytically intractable forθ. In order to provide an appropriate form for
sparse Bayesian learning, we introduce a new Bayesian model with the prior PDF in (3) wherec0, unlike c1, is a
constant with respect toω2, φ, andθ, and a corresponding likelihood function ofθ is introduced later in (12) of
Section 2.2.3.

2.2.2 Likelihood Functions for System Modal Parameters

The MAP estimates from modal identification are taken as the “measured” natural frequenciesω̂
2 = [ω̂2

1,1, . . . , ω̂
2
1,m,

ω̂2
2,1, . . . , ω̂

2
q,m]T and mode shapeŝψ =

[
ψ̂

T

1,1, . . . , ψ̂
T

1,m, ψ̂
T

2,1, . . . , ψ̂
T

q,m

]T

[15, 30]. The combination of predic-

tion errors and measurement errors for the system modal parameters are modeled as zero-mean Gaussian variables
with unknown variances. This maximum entropy probability model gives the largest uncertainty for these errors sub-
ject to the first two moment constraints [29]. Based on this Gaussian model, one gets a Gaussian likelihood function
for the system modal parametersω2 andφ based on the measured quantitiesω̂

2 andψ̂:

p
(
ω̂

2
, ψ̂|ω2,φ, θ

)
= p

(
ω̂

2|ω2
)

p
(
ψ̂|φ

)
= N

(
ω̂

2|Tω2, E
)
N

(
ψ̂|Γφ, η−1I qms

)
(9)

where the selection matrixΓ ∈ Rqms×dm with “1s” and “0s” picks the observed degrees of freedom of the whole
“measured” mode shape data set from the system mode shapes;T = [Im, . . . , Im]T ∈ Rqm×m is the transformation
matrix between the vector ofq sets of identified natural frequencieŝω

2 and the system natural frequenciesω2; E =
block diag (E1, . . . , Eq) is a block diagonal matrix with the diagonal block matricesEr = diag

(
ρ−1

1 , . . . , ρ−1
m

)
, r =

1, . . . , q; Im andI qms denote the identity matrices of corresponding size; andρ = [ρ1, . . . , ρm]T andη are prescribed
precision parameters for the predictions of the identified natural frequenciesω̂

2 and mode shapeŝψ from the system
modal parameters. In a hierarchical manner, exponential priors are placed on the parametersρi andη:

p (ρi|τi) = Exp (ρi|τi) = τiexp (−τiρi) , i = 1, . . . ,m;

p (η|ν) = Exp (ρ|ν) = νexp (−νη)
(10)
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which are the maximum entropy priors with support[0,∞) for given mean valuesτ−1
i andν−1 of ρi andη, respec-

tively. Then the prior PDF for the parameter vectorρ is given to:

p (ρ|τ) =
m∏

i=1

p (ρi|τi) =
m∏

i=1

τi · exp

(
−

m∑

i=1

τiρi

)
(11)

whereτ = [τ1, . . . , τm]T .

2.2.3 Likelihood Function for Structural Stiffness Scaling Parameters

During the calibration stage, we use Bayesian updating of the structural model based on the identified modal pa-
rameters from tests of the undamaged structure to find the MAP structural stiffness scaling parameterθ̂u and its
corresponding uncertainty. For this stage, we assume that there is a unique MAP estimateθ̂u due to the large amount
of time-domain vibration data and identified modal parameters that can be collected because there is no rush. During
the monitoring stage, we choose the MAP valueθ̂u from the calibration stage as pseudo-data forθ and define a likeli-
hood function to exploit the information that any stiffness changes∆θ = θ−θ̂u should be a sparse vector (most of its
components zero) for a structure in the absence of collapse. This is accomplished by incorporating the automatic rele-
vance determination (ARD) concept [19, 22] for∆θ: p (∆θ|α) = N (∆θ|0, A) with A = diag (α1, . . . , αn), where
each of the hyper-parametersαj is the prediction-error variance for∆θj . This choice is motivated by the closely
related sparse Bayesian learning framework which is known to provide an effective tool for pruning large numbers
of irrelevant or redundant features in a linear regression model that are not supported by the data [19, 26]. In sparse
Bayesian learning, the ARD concept is used in the prior but here we use it in the likelihood function forθ, along with
the prior onθ in (7). This choice still leads to a sparse representation of the parameter change vector∆θ during the
optimization of the hyper-parameter vectorα using the evidence maximization strategy of [31].

The likelihood function forθ based on the ARD concept is expressed as:

p
(
θ̂u|θ,α

)
= N

(
θ̂u|θ, A

)
=

n∏

j=1

N
(
θ̂u,j |θj , αj

)
(12)

To promote sparseness of the parameter vector∆θ even more strongly, we take the following exponential hyper-prior
PDF forα:

p (α|λ) =
n∏

j

p (αj |λ) =
n∏

j

λexp (−λαj) = λnexp


−λ

n∑

j

αj


 (13)

Finally, we model the uncertainty inλ by an exponential hyper-prior:

p (λ|ζ) = Exp (λ|ζ) = ζexp (−ζλ) (14)

Thus, a hierarchical Bayesian prior is defined for the structural stiffness scaling parameter vectorθ.

Remark 2. For Bayesian sparsity modeling, the Laplace distribution

p
(
θ̂u|θ, λ

)
=

∫
p

(
θ̂u|θ,α

)
p (α|λ) dα =

λn/2

2n
exp

(
−
√

λ
∥∥∥θ̂u − θ

∥∥∥
1

)

from (11) and (12) is desirable since it leads to a Bayesian MAP estimation that is equivalent to thel1 regularization
formulation that strongly enforces sparseness [24, 32–34]. However, this Laplace likelihood is not conjugate to the
Gaussian prior PDF in (7) and so the posterior PDF cannot be determined analytically from Bayes’ theorem. The
hierarchical Bayesian modeling of (12)–(14) is used instead; the first two stages (12)–(13) play a similar role to the
Laplace likelihood (but without integrating overα) and the last stage in (14) is embedded to penalize values ofλ that
are too large and so avoidθ parameter vectors that are too sparse. In this hierarchical formulation, we note that the
exponential hyper-prior in (13) is for the varianceα for sparseness promotion and not for the precisionα−1 that is
usually used in sparse Bayesian learning [19].
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2.2.4 Joint posterior PDF for hierarchical Bayesian model

By combining all the stages of the hierarchical Bayesian model, the joint posterior PDF of all the uncertain-valued
parameters conditional on the observed quantities can be constructed. From Bayes’ theorem, it is expressed as:

p
(
ω2, ρ, τ,φ, η, ν, θ, α, λ, ζ, β|ω̂2

, ψ̂, θ̂u, a0, b0

)

∝ p
(
ω̂

2|ω2, ρ
)

p
(
ψ̂|φ,η

)
p

(
θ̂u|θ, α

)
p

(
ω2, φ,θ|β)

p (ρ|τ) p (η|ν) p (α|λ) p (λ|ζ) p (β|a0, b0)
(15)

where the PDF is constructed by combining the different levels of the hierarchical Bayesian model. Note that we have
omitted the product of PDFsp(τ)p(ν)p(ζ) for notational convenience, since they are all chosen as broad uniform
priors and so are constant.

Hierarchical Bayesian models make use of the property of the conditional dependencies in the joint probability
model and a graphical model representation is demonstrated in Fig. 1, where each arrow denotes the generative model
(conditional dependencies). Note that the key idea of the formulation is demonstrated in the first five blocks from the
left, i.e., the pseudo evidence for the pseudo-dataθ̂u is maximized with respect to the hyper-parametersα, λ, and
ζ, which forces many of theαj , j = 1, . . . , n, to approach zero during the optimization and the correspondingθj ’s
become equal to their value for the undamaged state. This forces the inferred stiffness reductions to be spatially sparse
in a way that is consistent with the Bayesian Ockham razor [31, 35, 36]. A stiffness scaling parameterθj is changed
from its calibration valuêθu,j only if the posterior probability of the model class withθj fixed atθ̂u,j is less than a
model class withθj free to be updated.

2.3 Bayesian Inference

2.3.1 Approximation of the Full Posterior PDF using Laplace’s Method

The structural stiffness scaling parameterθ is of key interest for damage detection, along with its associated hyper-

parametersδ =
[
αT , λ, ζ

]T
as shown in (12)–(14). For convenience, we denote the other uncertain parameters as

ξ =
[
β,

(
ω2

)T
,ρT , τT ,φT ,η, ν

]T

. The posterior PDF over all uncertain parameters is then expressed as

FIG. 1: The acyclic graph of the hierarchical Bayesian model.
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p
(
ξ, θ, δ|ω̂2

, ψ̂, θ̂u, a0, b0

)
=

p
(
ξ, θ, δ, ω̂

2
, ψ̂, θ̂u|a0, b0

)

p
(
ω̂

2
, ψ̂, θ̂u|a0, b0

) (16)

However, this posterior PDF is nearly always intractable, since the denominator
(
ω̂

2
, ψ̂, θ̂u|a0, b0

)
in (16) is given

by an integral that cannot be computed analytically:

(
ω̂

2
, ψ̂, θ̂u|a0, b0

)
=

∫
p

(
ξ, θ, δ, ω̂

2
, ψ̂, θ̂u|a0, b0

)
dξdθdδ (17)

Nevertheless, a hierarchical Bayesian procedure combined with Laplace’s asymptotic approximation can provide an
effective approximation of the full posterior PDF.

We treatδ as a “nuisance” parameter vector and attempt to integrate it out to get the posterior for [ξ, θ]:

p
(
ξ, θ|ω̂2

, ψ̂, θ̂u

)
=

∫
p

(
ξ, θ, δ|ω̂2

, ψ̂, θ̂u

)
dδ =

∫
p

(
ξ, θ|δ, ω̂

2
, ψ̂, θ̂u

)
p

(
δ|ω̂2

, ψ̂, θ̂u

)
dδ (18)

where, from now on, we leave the conditioning on(a0, b0) implicit in the PDFs. Using Bayes’ theorem, we get a
modified form of (15):

p
(
ξ, θ|δ, ω̂

2
, ψ̂, θ̂u

)
∝ p

(
ω̂

2
, ψ̂, θ̂u|δ, ξ, θ

)
p (ξ, θ|δ)

= p
(
ω̂

2|ω2, ρ
)

p
(
ψ̂|φ,η

)
p

(
θ̂u|θ, α

)
p

(
ω2, φ, θ|β)

p (ρ|τ) p (η|ν) p (β|a0, b0)
(19)

Assuming that the posteriorp
(
δ|ω̂2

, ψ̂, θ̂u

)
in (18) has a unique maximum atδ̃ (the MAP value ofδ), we apply

Laplace’s asymptotic approximation [14] to (18) to get:

p
(
ξ, θ|ω̂2

, ψ̂, θ̂u

)
≈ p

(
ξ, θ|δ̃, ω̂

2
, ψ̂, θ̂u

)
(20)

whereδ̃ = arg max p
(
δ|ω̂2

, ψ̂, θ̂u

)
.

2.3.2 Bayesian Inference for the Posterior PDF of p(ξ, θ|δ̃, ω̂
2
, ψ̂, θ̂u)

MAP estimation by iterative optimizations:

The optimal (MAP) values
[
ξ̃, θ̃

]
of the unknown model parameters[ξ, θ] can be found by minimizing the negative

logarithm of the posterior PDFp
(
ξ,θ|δ̃, ω̂

2
, ψ̂, θ̂u

)
given by (19) withδ fixed at its MAP valuẽδ, so thatÃ =

diag (α̃1, . . . , α̃n) is fixed. This leads to minimization of:

J (ξ, θ) = (1− a0) logβ + b0β− q

2

m∑

i=1

log ρi +
1
2

(
ω̂

2 − Tω2
)T

E−1
(
ω̂

2 − Tω2
)

−
m∑

i=1

(log τi − τiρi)− sqm

2
log η +

η

2

∥∥∥ψ̂− Γφ
∥∥∥

2

− log ν + νη

+
1
2

(
θ̂u − θ

)T

Ã
−1

(
θ̂u − θ

)
− dm

2
log β +

β

2

m∑

i

∥∥(
K (θ)−ω2

i M
)
φi

∥∥2

(21)

where we have dropped constants that do not depend onξ andθ. The logarithm function in (21) is not a quadratic

function for the whole uncertain model parameter vector
[
ξT , θT

]T

but it is quadratic for each of the uncertain

parametersφ, ω2, andθ if the other two parameters are fixed. Therefore, explicit expressions can be obtained for
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iterative minimization of the objective function in (21) to update all of the parameters in
[
ξT , θT

]T

successively. This

strategy is similar to [18] but they fixβ, ρ, andη a priori and soτ andν are not needed. However, good values ofβ,
η, andρ are difficult to choose a priori.

By minimizing the function in (21) with respect toφ, η, andν successively with all other parameters fixed at their
MAP values, the MAP estimates̃φ, η̃, andν̃ are expressed as:

φ̃ =
(
β̃F̃ + η̃ΓT Γ

)−1

η̃ΓT ψ̂ (22)

η̃ =
sqm

2ν̃ +
∥∥∥ψ̂− Γφ̃

∥∥∥
2 (23)

ν̃ = 1/η̃ (24)

where

F̃ =




(
K

(
θ̃
)
− ω̃2

1M
)2

· · · 0
...

. . .
...

0 · · ·
(

K
(
θ̃
)
− ω̃2

mM
)2




dm×dm

(25)

We substitute (24) into (23) and the optimal estimate ofη̃ is

η̃ =
sqm− 2∥∥∥ψ̂− Γφ̃

∥∥∥
2 (26)

This is consistent with an iterative solution forη̃ by iterating between (23) and (24) until convergence.
Similarly, with all other parameters fixed at their MAP values, the MAP estimatesω̃

2, ρ̃, andτ̃ can be found by
setting the derivatives of (21) with respect toω2, ρ, andτ equal to zero, respectively:

ω̃
2 =

(
β̃G̃

T
G̃ + TT Ẽ

−1
T

)−1 (
β̃G̃

T
c̃ + TT Ẽ

−1
ω̂

2
)

(27)

ρ̃i =
q

2τ̃i +
∑q

r=1

(
ω̂2

r,i − ω̃2
i

)2 (28)

τ̃i = 1/ρ̃i (29)

where the matrix̃E is E in (9) evaluated at̃ρi and

G̃ =




M φ̃1 · · · 0
...

. ..
...

0 · · · M φ̃m




dm×m

(30)

c̃ =




(
K0 +

∑n
j=1 θ̃jKj

)
φ̃1

...(
K0 +

∑n
j=1 θ̃jK j

)
φ̃m




dm×1

=




K
(
θ̃
)

φ̃1

...

K
(
θ̃
)

φ̃m




dm×1

(31)

We solve forρ̃i using (29) in (28):

ρ̃i =
q − 2

∑q
r=1

(
ω̂2

r,i − ω̃2
i

)2 (32)
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This is consistent with an iterative solution forρ̃i by iterating between (28) and (29) until convergence.
Following the corresponding procedure forθ, we minimize (21) with respect toθ with other parameters fixed to

get the MAP estimate of structural model parameterθ̃:

θ̃ =
(
β̃H̃

T
H̃ + Ã

−1
)−1 (

β̃H̃
T

b̃ + Ã
−1

θ̂u

)
=

(
β̃ÃH̃

T
H̃ + In

)−1 (
β̃ÃH̃

T
b̃ + θ̂u

)
(33)

where the matrix̃H and vector̃b are those defined in (5) and (6), respectively, but evaluated at the MAP values,φ̃ and
ω̃

2.
Finally, by minimizing (21) with respect toβ for givena0 andb0, we get:

β̃ =
dm + 2 (a0 − 1)

2b0 +
∑m

i

∥∥∥
(

K
(
θ̃
)
− ω̃2

i M
)

φ̃i

∥∥∥
2 (34)

The final MAP estimates̃ξ andθ̃ are given by performing a sequence of iterations, in which (22), (26), (27), (32),
(33), and (34) are successively evaluated until some convergence criterion is satisfied. Notice that the MAP hyper-
parameters̃δ are involved explicitly only in (33) wherẽα1, . . . , α̃n appear on the diagonal of̃A. The determination
of δ̃ is described in Section 2.3.3.

Posterior uncertainty quantification ofξ andθ:

The posterior uncertainty inθ and ξ =
[
β,

(
ω2

)T
,ρT , τT ,φT , η, ν

]T

can be expressed as follows. Laplace’s

method approximates the posterior PDFp
(
ξ, θ|δ̃, ω̂

2
, ψ̂, θ̂u

)
by a Gaussian distribution with the mean at the MAP

estimates
(
ξ̃, θ̃

)
and covariance matrixΣ

(
ξ, θ|δ̃, ω̂

2
, ψ̂, θ̂u

)
which is equal to the inverse of the Hessian of the

objective functionJ (ξ,θ) evaluated at the MAP values
(
ξ̃, θ̃

)
[14]. The covariance matrix is therefore estimated as:

Σ
(
ξ, θ|δ̃, ω̂

2
, ψ̂, θ̂u

)
≈

[ H(1,1) H(1,2)

H(2,1) H(2,2)

]−1

(35)

where the block precision matrices are given by:

H(1,1) =




(
dm

2
− 1 + ã0

)
β̃−2

(
G̃

T
G̃ω̃

2 − G̃
T

c̃
)T

0 0

β̃G̃
T

G̃ + TT Ẽ
−1

T diag

(
qω̃2

1 −
∑q

r=1ω̂
2
r,1, ...,

qω̃2
m −∑q

r=1ω̂
2
r,m

)
0

diag
(
qρ̃−2

1 , . . . , qρ̃−2
m

)
/2 Im

sym diag
(̃
τ−2
1 , . . . , τ̃−2

m

)




(3m + 1)

× (3m + 1)

(36)

H(2,2) =




β̃F̃ + η̃ΓT Γ ΓT
(
Γφ̃− ψ̂

)

sqmη̃−2/2
0 β̃L3

1 0

sym

ν̃−2 0
β̃H̃

T
H̃ + Ã

−1




(dm+n+2)×(dm+n+2)

(37)

H(1,2) =




φ̃T F̃
T

0 0
(

H̃
T

H̃θ̃− H̃
T

b̃
)T

−2β̃L1 0 0 −β̃L2

0 0 0 0
0 0 0 0




(m+3)×(dm+n+2)

, H(2,1) =
[
H(1,2)

]T

(38)
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L1 =




φ̃T
1 M

(
K̃ − ω̃2

1M
)

0
.. .

0 φ̃T
mM

(
K̃ − ω̃2

mM
)




m×dm

(39)

L2 =




φ̃T
1 MK 1φ̃1 · · · φ̃T

1 MK nφ̃1

...
.. .

...
φ̃T

mMK 1φ̃m · · · φ̃T
mMK nφ̃m




m×n

(40)

L3 =




[(
K̃ − ω̃2

1M
)

K1 + K1

(
K̃ − ω̃2

1M
)]

φ̃1 · · · [(
K̃ − ω̃2

1M
)

Kn + Kn

(
K̃ − ω̃2

1M
)]

φ̃1

...
. . .

...[(
K̃ − ω̃2

mM
)

K1 + K1

(
K̃ − ω̃2

1M
)]

φ̃m · · · [(
K̃ − ω̃2

mM
)

Kn + Kn

(
K̃ − ω̃2

mM
)]

φ̃m




dm×n

(41)

whereK̃ = K
(
θ̃
)

. Given the joint Gaussian posterior PDF with mean
[
ξ̃

T
, θ̃

T
]T

and covariance matrix given

in (35), the mean and covariance matrix for the marginal Gaussian distribution of each parameter can be readily
expressed by partitioning the joint mean and covariance matrix, respectively.

Remark 3. The above MAP estimates and uncertainty quantification strategy are similar to that in [18]. The differ-
ences are that the hyper-parametersη, ν, ρ, τ, andβ are also optimized and more than one data segment (q ≥ 1) is
allowed.

2.3.3 MAP Estimates and Uncertainty Quantification for PDF p
(
δ|ω̂2

, ψ̂, θ̂u

)

In the next step, we find the MAP estimateδ̃ of the hyper-parameterδ. As stated in (20), these MAP values in

Laplace’s method are employed to approximatep
(
ξ,θ|ω̂2

, ψ̂, θ̂u

)
under the assumption thatp

(
δ|ω̂2

, ψ̂, θ̂u

)
is

sharply peaked around its mode at the MAP values.
To find the MAP value of hyper-parametersδ = [α, λ, ζ] , we maximize:

p
(
δ|ω̂2

, ψ̂, θ̂u

)
=

∫
p

(
δ, ξ|ω̂2

, ψ̂, θ̂u

)
dξ =

∫
p

(
δ|ξ, ω̂

2
, ψ̂, θ̂u

)
p

(
ξ|ω̂2

, ψ̂, θ̂u

)
dξ

≈ p
(
δ|ξ̂, ω̂

2
, ψ̂, θ̂u

)
∝ p

(
ω̂

2
, ψ̂, θ̂u|ξ̂, δ

)
p (δ)

(42)

where we assume the posteriorp
(
ξ|ω̂2

, ψ̂, θ̂u

)
has a unique maximum atξ̂ = arg max p

(
ξ|ω̂2

, ψ̂, θ̂u

)
and we ap-

ply Laplace’s asymptotic approximation to the integral. The last part of (42) comes from Bayes’ theorem by dropping

the denominator, which is independent ofδ, and by noting thatδ andξ are independent a priori, sop
(
δ|ξ̂

)
= p (δ).

We approximatêξ by the MAP estimates̃ξ obtained in Section 2.3.2. Takinĝξ = ξ̃, in (42), the evidence function

p
(
ω̂

2
, ψ̂, θ̂u|ξ̂, δ

)
of the model classM (δ) is given by:

p
(
ω̂

2
, ψ̂, θ̂u|ξ̃, δ

)
=

∫
p

(
ω̂

2
, ψ̂, θ̂u|θ, ξ̃,δ

)
p

(
θ|ξ̃, δ

)
dθ

=
∫

p
(
ω̂

2|ω̃2, ρ̃
)

p
(
ψ̂|φ̃, η̃

)
p

(
θ̂u|θ,α

)
p

(
θ|ω̃2, φ̃, β̃

)
dθ

∝
∫

p
(
θ̂u|θ, α

)
p

(
θ|ω̃2, φ̃, β̃

)
dθ

= p
(
θ̂u|ω̃2, φ̃, β̃, α

)

(43)

Substituting the Gaussian PDFs in (7) and (12) into the last equation and integrating analytically overθ:
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p
(
θ̂u|ω̃2, φ̃, β̃, α

)
= N

(
θ̂u|

(
H̃

T
H̃

)−1

H̃
T

b̃, D
)

(44)

whereD = A +
(
β̃H̃

T
H̃

)−1

and the matrixH̃ is defined by (5), but evaluated at the MAP estimatesφ̃. We call

p
(
θ̂u|ω̃2, φ̃, β̃, α

)
in (44) thepseudo-evidencefor the structural model provided by the pseudo-dataθ̂u. From (42),

(43), and (44), to find the MAP values̃δ, we must maximize:

p
(
θ̂u|ω̃2, φ̃, β̃, α

)
p(α|λ)p(λ|ζ) = N

(
θ̂u|

(
H̃

T
H̃

)−1

H̃
T

b̃, D
)
· λnexp


−λ

n∑

j=1

αj


 · ζ exp (−ζλ) (45)

As shown in Appendix A, direct differentiation of the logarithm of (43) with respect toα and setting the derivative
equal to zero, leads to:

α̃j =

−1 +

√
1 + 8λ

(
(Σθ)jj +

(
θ̂u − θ̃

)2

j

)

4λ
(46)

whereΣθ =
(
β̃AH̃

T
H̃ + In

)−1

A = A
(
β̃H̃

T
H̃A + In

)−1

is the covariance matrix forθ conditional onξ̂, which

corresponds to the inverse of the block precision matrix in the bottom right corner ofH(2,2) in (37).
A key point to note is that many of thẽαj approach zero during the optimization, which implies from (11) that their

corresponding∆θj = θj − θ̂j,u have negligibly small values. This is a similar procedure to sparse Bayesian learning
where redundant or irrelevant features are pruned away leading to a sparse explanatory subset [19, 25]. Here, the
procedure suppresses the occurrence of false damage detections by reducing the posterior uncertainty of the stiffness
scaling parameterθ. To avoid the occurrence of missed alarms, an appropriate MAP value of hyper-parametersλ

should be utilized.
The MAP estimates of the hyper-parametersλ andζ are also derived in Appendix A:

λ̃ = n/




n∑

j=1

α̃j + ζ̃


 (47)

ζ̃ = 1/λ̃ (48)

We do not eliminatẽζ to give one equation for̃λ because it may happen that allα̃j are temporarily zero during an
iteration.

The posterior PDFp
(
δ|ω̂2

, ψ̂, θ̂u

)
can be well approximated by a Gaussian distributionN

(
δ|δ̃, H

(
δ̃
)−1

)

with meanδ̃ and covariance matrixH
(
δ̃
)−1

[14], where the Hessian matrixH
(
δ̃
)

is calculated as:

H
(
δ̃
)

=




2Ã
−3

B̃− Ã
−2




1
...
1







0
...
0







1
...
1




T

nλ̃−2 1




0
...
0




T

1 ζ̃−2




(n+2)×(n+2)

(49)
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where

B̃ =




(Σθ)11 +
(
θ̂u − θ̃

)2

1
· · · 0

...
. . .

...

0 · · · (Σθ)nn +
(
θ̂u − θ̃

)2

n




n×n

(50)

3. PROPOSED DAMAGE INFERENCE METHOD

3.1 Sparse Bayesian Learning Algorithm for Identification of Spatially Sparse Stiffness Reductions

We produce a new Bayesian learning algorithm for sparse stiffness loss inference which iterates among the MAP
values of all uncertain parameters until some specified convergence criteria are satisfied. Given the modal dataω̂

2

and ψ̂, as well as the MAP estimateŝθu obtained from the calibration stage, the MAP estimates of the stiffness
scaling parametersθ are obtained, along with their corresponding posterior uncertainty. There are two variants of the
algorithm. For the monitoring stage, Algorithm 2 is used that employs the evidence strategy in (46)–(48) for sparse
stiffness loss inference. For the calibration stage, however, model sparseness is not expected and hence Algorithm 1
is used without optimization of the hyper-parameters{α, λ, ζ}, so we fix all componentsαj andλ, ζ are not needed.

Algorithm 1 and 2: Sparse Bayesian learning for identification of sparse stiffness reductions

1. INPUTS: Identified modal datâω2 andψ̂, and if Algorithm 2, the MAP estimatêθu from the calibration stage,
while if Algorithm 1, a chosen nominal vectorθ0.

2. OUTPUTS: MAP estimates and posterior uncertainty of all uncertain parameters.

3. Initialize the stiffness scaling parameter vector with the nominal vectorθ̃ = θ0 if the calibration stage (Algo-
rithm 1) and if the monitoring stage,̃θ = θ̂u, and initialize the system natural frequencies as the mean of the
measured natural frequencies over all data segments,ω̃

2 =
∑q

r=1 ω̂
2
r/q.

4. While convergence criterion is not met.

5. Update MAPφ̃ using (22), and then updatẽη using (26);

6. Update MAPω̃
2 using (27), and then updatẽρ using (32);

7. Update MAPθ̃ using (33);

8. Update MAPβ̃ using (34) for givena0 andb0.

9. If Algorithm 1, fix all components iñα with large values (e.g.,̃αj = 109);

10. If Algorithm 2, updateα̃ using (46), then updatẽλ andζ̃ using (47) and (48);

11. End while (convergence criterion has been satisfied).

12. Estimate the posterior uncertainty using (35)–(41), (49), and (50) for all uncertain parameters.
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3.1.1 Implementation Details

1. Hyper-parameters initialization:Using (26), (32), and (34) along with some approximations, the hyper-parame-
tersβ, η, andρi are initialized as:

β̄ = (dm + 2 (a0 − 1)) /2b0, (51)

η̄ = (sqm− 2) /
∥∥∥ψ̂

∥∥∥
2

(52)

ρ̄i = (q − 2) /

q∑
r=1

ω̂4
r,i, i = 1, . . . , m. (53)

For the initial value of the hyper-parametersᾱj , we useᾱj = n2, j = 1, . . . , n, which is inspired by [19].

2. Optimization of the equation-error precisionβ. An important step in the algorithm is the optimization of the
equation-error precisionβ, where we fix the shape parametera0 = 1, which is chosen to produce what is
considered a reasonable shape for penalizing values ofβ that are too large, and the rate parameterb0 = 1 andb0

= 0.1, which is found to scale the prior distribution in (8) appropriately for Algorithms 1 and 2, respectively.

3. Parameter fixing.When running Algorithm 2, we fix components̃θj = θ̂u,j if the corresponding hyper-
parameterαj becomes smaller thanαmin (chosen as10−9 in the example later), because this helps to accelerate
the convergence of the algorithmic optimization.

4. Convergence criterion.Algorithm 2 is terminated when the change in alllog αj ’s between thelth iteration and
the(l−1)th iteration are sufficiently small (e.g., smaller than0.005). For Algorithm 1, the convergence criterion
is satisfied when the change of model parameters inθ̃ is sufficiently small (e.g., smaller than 0.001).

5. Number of data segments utilized.It is seen from (32) that the number of data-segments for modal parameter
identification should be at least three (q ≥ 3) for tractable estimations of hyper-parametersρ̃.

Remark 4. Algorithm 2 is performed by iterating between the optimization of two groups of parameters
[
ξT ,θT

]T

andδ, which can be regarded as a generalized version of the top-down scheme from sparse Bayesian learning [19, 25].
The procedure starts by considering all substructures that are possibly damaged (α̃j = n2 at the first iteration,j =
1, . . . , n) and then causes the “inactive” componentsθj to be exactly equal tôθu,j from the calibration stage when
optimizing over the hyper-parametersαj , so that finally only a few “active”θj ’s are changed and their corresponding
substructures are considered to be damaged.

3.2 Evaluation of Damage Probability

In contrast to the deterministic sparse inversion algorithms, such as linear programming in Basis Pursuit [32, 33]
and greedy algorithms in Orthogonal Matching Pursuit [34], that provide only a point estimate of the model param-
eter vector to specify the sparse representation, the sparse Bayesian learning framework uses posterior probability
distributions over the model parameters as an efficient way to quantify uncertainty of the sparse model. For the struc-
tural damage identification problem of interest here, the MAP estimates and the posterior uncertainty of the stiffness
scaling parameters can be used to quantify the probability that thejth substructure stiffness scaling parameter has
been reduced by more than a specified fractionf of the stiffness in the calibration stage. To proceed, we denote
the stiffness scaling parameter of thejth substructure for the current possibly damaged state and initial undamaged
state asθd,j andθu,j , respectively. Using a Gaussian asymptotic approximation [37] for the integrals involved, as in
[2],
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P dam
j (f) = P

(
θd,j < (1− f) θu,j |ω̂2

u, ψ̂u, ω̂
2
d, ψ̂d

)

=
∫

P
(
θd,j < (1− f) θu,j |θu,j , ω̂

2
u, ψ̂u, ω̂

2
d, ψ̂d

)
p

(
θu,j |ω̂2

u, ψ̂u

)
dθu,j

≈ Φ


 (1− f)θ̃u,j − θ̃d,j√

(1− f)2σ2
d,j + σ2

u,j




(54)

whereΦ(·) is the standard Gaussian cumulative distribution function;
[
ω̂

2
d, ψ̂d

]
and

[
ω̂

2
u, ψ̂u

]
are the identified

modal parameters from the current monitoring (possibly damaged) stage and calibration (initial undamaged) stage, re-
spectively;̃θd,j andθ̃u,j(= θ̂u,j) denote the MAP stiffness scaling parameters of thejth substructure for the possibly
damaged and undamaged structure, respectively, from (33);σd,j andσu,j are the corresponding posterior standard
deviations of the stiffness scaling parameterθj of the jth substructure, which are the square root of the diagonal
elements of the posterior covariance matrixΣθ given after (46).

4. EXAMPLES

4.1 Example 1: Simulated Ten-story Shear Building

The first example is chosen to be the same as that presented in [18] and applies only Algorithm 1 for calibration. The
structure is a ten-story linear shear building in which the lumped masses of each floor are equal to 100 metric tons.
The inter-story stiffness isk0 =176.729 MN/m for all stories to give the first five modal natural frequencies as 1.00,
2.98, 4.89, 6.69, and 8.34 Hz. For system identification, one stiffness scaling parameterθj is used for each story,
j = 1, . . . , 10, whereK j = θjK̄ j is the uncertain contribution of thejth story to the global stiffness matrixK , as in
(1) with K0 = 0, andK̄ j is the “nominal” contribution, which, for convenience, is taken as the exact contribution so
θj = 1 gives the exact value forK j at the calibration (undamaged) stage. Zero-mean Gaussian noise is added to the
exact modal parameters with a standard deviation of 1% of the exact modal frequencies and mode shapes, which is the
same strategy as in the method by Yuen et al. [18]. The goal of this example is to test the performance of Algorithm
1 for identifying the structural model parametersθ at the calibration stage. As in [18], the initial value of eachθj for
starting the iterations in Algorithm 1 is selected randomly from a uniform distribution within the interval between2
and3 to demonstrate robustness to the initial choice.

In the first set of experiments, we study the effect of different choices of the equation-error precisionβ on the
identification performance. First, the results of the identified MAP values of the stiffness scaling parametersθj using
four choices of hyper-parameterβ and the first four measured modes (m = 4) identified from three data segments
(q = 3) of complete measurements (s = 10) are tabulated in Table 1 for the method by Yuen et al. [18]. The
associated posterior coefficients of variation (c.o.v.), which are calculated from the ratio of the square root of the
diagonal elements of the posterior covariance matrixΣθ given after (46) to the MAP values in (33), are also presented
in Table 1. In order to make a fair comparison with the results in [18], we set extra parametersϕi = ρi

∑q
r=1 ω̂4

r,i/q,
i = 1, . . . , m, to normalizeρi and the corresponding parameter vector isϕ = [ϕ1, . . . , ϕm]. Following the strategy
used in [18], we fix the hyper-parametersη = 105 andϕ =

[
104, . . . , 104

]
. It is seen that the various values of

β correspond to different MAP identification results for the method by Yuen et al. [18] and hence proper selection
of the hyper-parameterβ is important for identification accuracy. It is further observed that the associated posterior
uncertainty is highly dependent on the selected value ofβ, with coefficients of variation that can give a misleading
confidence in the accuracy of the MAP estimates.

Next, we run Algorithm 1 with different choices of the initial value ofβ and with fixed hyper-parametersη = 105

andϕ =
[
104, . . . , 104

]
using from three to five measured modes(m) identified from three data segments(q = 3).

For each set of measured modes, all runs converge to the same MAP value ofβ (bottom line of Table 2) and the
same MAP vector and associated c.o.v. of the stiffness scaling parametersθ, no matter what initial values ofβ are
chosen. The identification error for the obtained results for four measured modes is generally smaller than those for the
method by Yuen et al. [18] that are shown in Table 1. Therefore, the use of the optimization scheme for the selection
of the hyper-parametersβ in Algorithm 1 gives it the ability to accurately identify the stiffness scaling parametersθ.
Comparing the associated posterior uncertainty, the c.o.v. values obtained for Algorithm 1 lie between those obtained
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TABLE 1: Identification results using the method by Yuen et al. [18] with three data segments (q = 3)
and four measured modes (m = 4), andη = 105, ϕ =

[
104, . . . , 104

]
andβ fixed at different values

(Example 1)

β 0.1β̄a β̄ 10β̄ 100β̄

Parameters Initial values MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%)
θ1 2.033 0.990 0.871 0.990 0.275 0.990 0.087 0.989 0.028
θ2 2.462 0.991 1.500 0.993 0.474 0.992 0.150 0.995 0.047
θ3 2.771 1.000 0.798 1.001 0.252 1.001 0.080 1.002 0.025
θ4 2.268 1.002 0.715 1.000 0.226 0.999 0.071 0.996 0.023
θ5 2.583 1.003 0.956 1.001 0.303 1.002 0.096 1.001 0.030
θ6 2.936 0.987 0.736 0.991 0.233 0.995 0.074 0.997 0.023
θ7 2.410 0.998 0.763 1.000 0.241 1.000 0.076 1.001 0.024
θ8 2.348 1.005 0.999 0.998 0.317 0.993 0.100 0.997 0.032
θ9 2.148 0.992 0.683 0.993 0.216 0.992 0.068 0.987 0.022
θ10 2.305 0.998 0.750 0.998 0.237 0.998 0.075 1.001 0.024

a β̄ = dm/2 = 20 calculated using (51) witha0 = 1 andb0 = 1.

TABLE 2: Identification results of Algorithm 1 using different number of measured modes (m) but the same
number of data segments (q = 3), with η = 105, ϕ =

[
104, . . . , 104

]
andβ optimized from different initial

values (Example 1)
3 modes (m = 3) 4 modes (m = 4) 5 modes (m = 5)

Parameter Initial values MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%)
θ1 2.033 0.995 0.573 0.990 0.293 0.995 0.178
θ2 2.462 0.983 0.677 0.993 0.504 0.997 0.278
θ3 2.771 1.018 0.844 1.001 0.268 0.996 0.139
θ4 2.268 0.993 0.498 1.001 0.241 0.999 0.189
θ5 2.583 1.017 0.455 1.001 0.322 1.000 0.144
θ6 2.936 0.993 0.548 0.992 0.248 0.998 0.176
θ7 2.410 0.994 0.638 0.999 0.256 0.995 0.151
θ8 2.348 0.992 0.468 0.999 0.337 0.995 0.171
θ9 2.148 1.000 0.440 0.993 0.230 0.993 0.165
θ10 2.305 1.005 0.564 0.998 0.252 0.997 0.136

β {0.1, 1, 10, 100} × β̄a 14.339 25.820 17.643 22.361 22.768 20.000
a β̄ = dm/2 = 5m, calculated using (51) witha0 = 1 andb0 = 1.

by the method by Yuen et al. [18] forβ = 0.1β̄ andβ̄ due to the final MAP estimatẽβ = 17.643, wherēβ = 20 is
calculated using (51) witha0 = 1 andb0 = 1. The results in Table 2 show, as expected, that using more measured modes
results in smaller identification errors and smaller associated uncertainty than the results when using less modes; while
the identified MAP valuẽβ gets larger.

The iteration histories for convergence of the MAP values of the stiffness scaling parameters are shown in
Figs. 2(a) and 2(b) corresponding to the results in Table 1 and 2. When the selectedβ is small, i.e.,β = 0.1β̄,
the convergence for the method by Yuen et al. [18] is very fast, occurring in the first few iterations, but the final iden-
tified MAP values have larger errors than in Algorithm 1. Largerβ should be selected for more accurate identification
results. However, whenβ is selected to be too large, i.e.,β = 100β̄, the convergence is very slow, requiring more than
300 iterations. In contrast, Algorithm 1 produces accurate identification results in the first few iterations, no matter
what the initialβ is, as shown in Fig. 2(b), which shows an advantage for employing a hierarchical Bayesian prior for
β in (8) and then finding the MAP value ofβ from the modal data.
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FIG. 2: Iteration histories for the MAP values of the 10 stiffness scaling plural (m = 4, q = 3): (a) using the method
by Yuen et al. [18] withη = 105, ϕ =

[
104, . . . , 104

]
andβ fixed at different values: (i) 0.1̄β; (ii) β̄; (iii) 10β̄; (iv)

100β̄; (b) using Algorithm 1 withη = 105, ϕ =
[
104, . . . , 104

]
andβ optimized starting from different initial values:

(i) 0.1β̄; (ii) β̄; (iii) 10β̄; (iv) 100β̄; (c) using Algorithm 1 withβ, η, andρi optimized and varying the initial default
valuesβ̄, η̄, andϕ̄ by different factors: (i)0.1; (ii) 1; (iii) 10; (iv) 100.

Finally, we examine optimization of the hyper-parametersη andρ for good identification performance. We run
Algorithm 1 to optimize the hyper-parametersβ, η, andρ and vary thēβ, η̄, andϕ̄i = ρ̄i

∑q
r=1 ω̂4

r,i/q calculated
from (51)–(53), respectively, by factors 0.1, 1, 10, and 100 to get four choices of the initial values, using from three
to five measured modes(m = 3− 5) identified from three data segments(q = 3). Identical results are obtained for
all runs and the final identified MAP values and their associated c.o.v. are presented in Table 3. The identification
accuracy of the MAP values and the associated c.o.v. are close to that in Table 2, because of the similar MAP estimates
β̃. Furthermore, it is observed that the identified MAP estimatesη̃ and ϕ̃i = ρ̃i

∑q
r=1 ω̂4

r,i/q, i = 1, . . . m, are
close to the values selected in the method by Yuen et al. [18], i.e.,105 and104, respectively. Figure 2(c) shows the
iteration history for convergence of the MAP estimatesθ̃ and the values essentially converge in 80 iterations, which
is much slower convergence than in Fig. 2(b). This is due to the additional optimization of the hyper-parametersη and
ρ.

We now consider different numbers of data segments to give multiple estimates of the identified modal parameters.
The stiffness identification results using Algorithm 1 are presented in Tables 4 and 5, for full-sensor and partial-sensor
scenarios, respectively. For the full-sensor scenario, measurements at all ten floors are available(s = 10) while for
the partial-sensor scenario, only measurements from five sensors are utilized which are located on the first, fourth,
fifth, seventh, and top floors(s = 5). The corresponding iteration histories for the MAP values are also shown in
Fig. 3. For stiffness parameter inference, the first four measured modes(m = 4) are utilized and the initial values
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TABLE 3: Identification results of Algorithm 1 using different number of measured modes (m) but the same
number of data segments(q = 3), with β, η, andρ optimized from different initial values (Example 1)

3 modes (m = 3) 4 modes (m = 4) 5 modes (m = 5)

Parameter Initial values MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%)

θ1 2.033 0.996 0.579 0.990 0.298 0.995 0.179

θ2 2.462 0.984 0.684 0.993 0.512 0.997 0.281

θ3 2.771 1.018 0.854 1.002 0.273 0.997 0.140

θ4 2.268 0.993 0.504 1.001 0.244 0.999 0.190

θ5 2.583 1.017 0.461 1.001 0.327 1.000 0.146

θ6 2.936 0.994 0.554 0.991 0.251 0.998 0.178

θ7 2.410 0.995 0.646 1.000 0.260 0.995 0.152

θ8 2.348 0.992 0.473 0.999 0.342 0.995 0.172

θ9 2.148 1.001 0.445 0.993 0.234 0.994 0.167

θ10 2.305 1.006 0.571 0.998 0.256 0.997 0.137

β {0.1, 1, 10, 100} × β̄a 14.000 25.820 17.099 22.361 22.349 20.000

η {0.1, 1, 10, 100} × η̄b 1.397×105 14.907 1.255×105 12.910 1.146×105 11.547

φ1 {0.1, 1, 10, 100} × φ̄1
c 0.318×104 81.650 0.318×104 81.650 0.318×104 81.650

φ2 {0.1, 1, 10, 100} × φ̄2
c 0.350×104 81.650 0.351×104 81.650 0.340×104 81.650

φ3 {0.1, 1, 10, 100} × φ̄3
c 0.977×104 81.650 0.578×104 81.650 0.627×104 81.650

φ4 {0.1, 1, 10, 100} × φ̄4
c 0.552×104 81.650 0.552×104 81.650

φ5 {0.1, 1, 10, 100} × φ̄5
c 0.215×104 81.650

a β̄ = dm/2 = 5m, calculated using (51) witha0 = 1 andb0 = 1.
b η̄ = (sqm− 2) /

∥∥∥ψ̂
∥∥∥

2

= 30m− 2 (with normalization
∥∥∥ψ̂

∥∥∥ = 1) calculated from (52).

c ϕ̄i = ρ̄i

q∑
r=1

ω̂4
r,i/q = (q − 2) /q = 1/3 calculated from (53).

of the hyper-parameters are set asβ, η̄, andϕ̄ = [ϕ̄1, . . . , ϕ̄i] , calculated from (51)–(53), respectively. It is not
surprising to see that the MAP estimatesθ̃ become closer and closer to their actual value with the increase of the
number of the data segments. Moreover, the corresponding uncertainty also decreases, implying higher confidence in
the identification results. Correspondingly, much fewer numbers of iterations are required for convergences, as seen
from the observation of the iteration histories in Fig. 3. All of these benefits come from more information in the data
that are available for constraining the parameter updating. Notice that when the number of data segments is selected
to be 100, the identification errors for the MAP estimates of all stiffness scaling parametersθj become smaller than
0.3%, which is accurate enough for the MAP valuesθ̃ to be utilized as the pseudo-data for the likelihood function
in (12) in a subsequent monitoring stage. The convergence of the MAP values occurs in about 30 iterations for the
full-sensor scenario, which is a much smaller number than that of the tests when only three data segments are utilized
(compare Fig. 3 with Fig. 2).

The final six rows of Tables 4 and 5 give the identified MAP estimatesβ̃, η̃, andϕ̃. It is seen that the identified̃β’s
are around 18 and 19 for full-sensor and partial-sensor scenarios, respectively, which is close to the results in Table 3.
The identified MAP estimates̃η andϕ̃i get closer and closer to the values selected in the method by Yuen et al. [18],
i.e.,105 and104, respectively, with the increase of the number of the data segments. However, the proposed algorithm
is automatic and no user intervention is needed, which is an advantage of employing a hierarchical Bayesian prior for
η andρ in (10) and finding their MAP values from the data.
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TABLE 4: Identification results by Algorithm 1 using various number of data segments for the full-sensor scenario
(s = 10) (Example 1)

5 segments 10 segments 50 segments 100 segments

Parameter Initial
values

MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%)

θ1 2.033 0.986 0.304 0.997 0.293 0.999 0.284 1.000 0.284

θ2 2.462 0.996 0.524 1.006 0.502 1.010 0.486 1.004 0.486

θ3 2.771 0.996 0.279 0.993 0.269 1.000 0.261 1.000 0.261

θ4 2.268 1.001 0.250 0.997 0.241 0.999 0.234 0.999 0.233

θ5 2.583 0.996 0.335 0.999 0.322 0.999 0.313 1.001 0.312

θ6 2.936 0.988 0.257 0.995 0.248 1.000 0.240 1.000 0.240

θ7 2.410 0.993 0.266 0.992 0.256 0.999 0.248 1.000 0.248

θ8 2.348 0.995 0.350 1.000 0.335 0.999 0.327 0.998 0.326

θ9 2.148 0.988 0.238 1.000 0.229 0.999 0.223 1.000 0.223

θ10 2.305 0.994 0.261 0.995 0.251 1.001 0.245 1.000 0.244

β β̄a 16.523 22.361 17.779 22.361 18.699 22.361 18.786 22.361

η η̄b 1.169×105 10.000 1.225×105 7.071 1.046×105 3.162 1.012×105 2.236

φ1 φ̄1
c 0.492×104 63.246 0.994×104 44.721 1.151×104 20.000 1.018×104 14.142

φ2 φ̄2
c 0.523×104 63.246 0.591×104 44.721 0.921×104 20.000 0.957×104 14.142

φ3 φ̄3
c 0.489×104 63.246 0.631×104 44.721 0.905×104 20.000 0.864×104 14.142

φ4 φ̄4
c 1.432×104 63.246 1.676×104 44.721 0.854×104 20.000 0.939×104 14.142

a β̄ = dm/2 = 20, calculated using (51) witha0 = 1 andb0 = 1.
b η̄ = (sqm− 2) /

∥∥∥ψ̂
∥∥∥

2

= 40q − 2 calculated from (52).

c ϕ̄i = ρ̄i

q∑
r=1

ω̂4
r,i/q = (q − 2) /q, i = 1, . . . , 4, calculated from (53).

4.2 Example 2: IASC-ASCE Phase II Simulation Benchmark Problem

4.2.1 Structure and Modal Data

In the second example, the proposed methodology is applied to update the stiffness parameters of the IASC-ASCE
Phase II Simulated SHM Benchmark structure. The benchmark model is a four-story, two-bay by two-bay steel braced-
frame finite-element structural model with 216 DOFs. A diagram for this model is shown in Fig. 4 along with its
dimensions, in which thex direction is the strong direction of the columns. A description of the benchmark problem
including detailed nominal properties of the structural elements in the analytical model can be found in [16, 17,
27].

For steel-frame structures, earthquake structural damage usually occurs in braces and beam-column connections
due to bucking and fracture, respectively. The case studies in the Phase II Simulated SHM Benchmark problem cover
detection and assessment of both damage types but in this work, we focus on the brace damage cases. For brace
damage, four damage cases are considered that are simulated by reducing the Young’s moduli of certain braces in the
structural model: (1) DP1B: 50% stiffness reduction in br 1-11 and br 7-17; (2) DP2B: like DP1B but 25% stiffness
reduction in br 1-11 and br 7-17; (3) DP3B: same as DP1B, but in addition 25% stiffness reduction in br 19–29 and br
25–35; (4) DP3Bu: 50% and 25% stiffness reduction in br 1–11 and br 19–29. Here, br X-Y denotes the brace joining
the nodes X and Y in Fig. 4. The dashed lines in Fig. 5 also indicate the corresponding damaged braces.
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TABLE 5: Identification results by Algorithm 1 using various number of data segments for the partial-sensor scenario
(s = 5) (Example 1)

5 segments 10 segments 50 segments 100 segments

Parameter Initial
values

MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%) MAP c.o.v. (%)

θ1 2.033 0.990 0.284 0.999 0.282 0.997 0.279 0.999 0.276

θ2 2.462 1.014 0.487 1.017 0.482 1.013 0.477 1.003 0.473

θ3 2.771 0.994 0.261 0.994 0.260 1.002 0.256 1.002 0.254

θ4 2.268 0.997 0.234 0.992 0.232 1.000 0.229 0.999 0.227

θ5 2.583 0.998 0.313 0.997 0.311 0.998 0.307 1.002 0.304

θ6 2.936 1.003 0.241 0.999 0.239 1.000 0.236 1.000 0.233

θ7 2.410 0.985 0.246 0.995 0.246 0.998 0.243 0.999 0.241

θ8 2.348 1.006 0.328 1.008 0.324 1.003 0.320 1.002 0.317

θ9 2.148 0.979 0.222 0.992 0.221 0.996 0.218 0.998 0.216

θ10 2.305 0.991 0.244 0.996 0.242 1.004 0.240 1.001 0.237

β β̄a 18.922 22.361 19.132 22.361 19.502 22.361 19.832 22.361

η η̄b 1.332×105 14.142 1.290×105 10.000 1.013×105 4.472 1.015×105 3.162

φ1 φ̄1
c 0.492×104 63.246 0.995×104 44.721 1.153×104 20.000 1.018×104 14.142

φ2 φ̄2
c 0.540×104 63.246 0.593×104 44.721 0.920×104 20.000 0.957×104 14.142

φ3 φ̄3
c 0.499×104 63.246 0.625×104 44.721 0.905×104 20.000 0.864×104 14.142

φ4 φ̄4
c 1.481×104 63.246 1.681×104 44.721 0.856×104 20.000 0.939×104 14.142

a β̄ = dm/2 = 20, calculated using (51) witha0 = 1 andb0 = 1.
b η̄ = (sqm− 2) /

∥∥∥ψ̂
∥∥∥

2

= 20q − 2 calculated from (52).

c ϕ̄i = ρ̄i

q∑
r=1

ω̂4
r,i/q = (q − 2) /q, i = 1, . . . , 4, calculated from (53).
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FIG. 3: Iteration histories for the MAP values of the 10 stiffness scaling plural using Algorithm 1 for two sensor
scenarios: (a) full-sensor; (b) partial-sensor; and with four different numbers of data segments utilized: (i) 5; (ii) 10;
(iii) 50; (iv) 100.
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FIG. 4: The diagram of the benchmark structure [16, 17].

                  

(a)  DP1B and DP2B                               (b) DP3B                                           (c) DP3BU 

FIG. 5: Damage patterns for brace-damage cases (the dashed lines indicate the corresponding damaged locations)
[16, 17]: (a) DP1B and DP2B; (b) DP3B; (c) DP3BU.

Both the full-sensor and partial-sensor scenarios are considered in the experiment. For the full-sensor scenario,
measurements are available at the center of each side at each floor with the directions parallel to the side in either
the positivex direction ory direction. For the partial-sensor scenario, only the measurements at the third floor (mid-
height) and the roof are available.

To generate the simulated test data, a Matlab program for the simulated Phase II Benchmark [16, 17] is utilized
and measurement noise equal to 10% RMS of the signal at the measured DOFs are added. For the monitoring stage,
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ten time-history segments(q = 10) of duration 20 s (10,000 sampling points with sampling frequencies of 500 Hz)
are generated to yield ten sets of independent MAP estimates of the experimental modal parameters (ω̂

2
r andψ̂r,

r = 1, . . . , 10) for all damage cases. Ching [16] identified a total of eight modes, four in the strong (x) direction
and four in the weak (y) direction, of the structure by applying the MODE-ID methodology [15, 28] to each segment
of the time histories. The identified MAP modal parameters are presented in [16, 17]. For the calibration stage, in
order to get more accurate inferred MAP estimates of stiffness parameters, we increase the number of time-history
segments for tests of the undamaged structure to 100(q = 100), and generate the 200 s time history by changing
the “time duration” to 200 s in the Matlab program for the simulated Phase II Benchmark to identify 100 sets of
independent MAP estimates of the modal parameters. In practice when performing modal identification, some lower
modes might not be detected and the order of the modes might switch when damage occurs, but this is not a problem
for the proposed method because it does not require matching the experimental and structural model modes.

4.2.2 Damage Detection and Assessment

For brace damage cases, a 3-D 12-DOF shear-building model with rigid floors and three DOF per floor (translations
parallel to thex andy axes and rotation about thez axis) is employed in the damage inference procedure. The mass
matrix is obtained by projecting the full mass matrix for the 216 DOF finite-element structural model onto the 12
DOF and is taken as known during the system identification procedure. To locate the faces sustaining brace damage,
the stiffness matrixK is parameterized as

K (θ) = K0 +
∑

u

∑
v

θuvK̄uv (55)

whereu = 1, . . . , 4 refers to the story number andv = +x,−x, +y,−y indicates the direction of the outward
normal of each face at each floor. TheK̄uv ’s are the “nominal” stiffness matrices computed based on shear-building
assumptions. Four stiffness scaling parameters are used for each story to give a stiffness scaling parameter vectorθ

with 16 components, corresponding to 16 substructures (four faces of four stories). Note that the relative stiffness loss
for a particular face with 25% and 50% stiffness loss in any one brace is computed to be 5.7% and 11.3%, respectively.
This corresponds to a stiffness scaling parameter of 94.3% and 88.7%, respectively, of the undamaged values.

During the calibration stage, we utilize Algorithm 1 based on the identified modal parameters from tests of the
undamaged structure to find the MAP structural stiffness scaling parametersθ̂u and their corresponding c.o.v., which
are shown in Tables 6 and 7 for the two sensor scenarios. Similar with the results in Example 1, identification results
for the MAP estimates of all stiffness scaling parametersθj are accurate, i.e, errors are smaller than 0.6% and 4.2%
for full-sensor and partial-sensor scenarios, respectively, when the number of data segments is selected to be 100
(q = 100). During the monitoring stage, we choose the MAP valueθ̂u from the calibration stage as pseudo-data for
θ and run Algorithm 2 based on ten sets of identified modal parameters as the primary data. The stiffness ratios of the
MAP estimates of the stiffness scaling parametersθ̃uv with respect to those inferred from the calibration stage and
their associated c.o.v. are also tabulated in Tables 6 and 7 for the two sensor scenarios.

In Tables 6 and 7, the actual damaged locations are made bold for comparison. It is observed that most of compo-
nents with non-bold font have their stiffness ratio exactly equal to 1, showing they are unchanged by the monitoring
stage data, and the corresponding c.o.v. for each of these components is zero, which means these substructures have
no stiffness reduction with full confidence (conditional on the modeling) compared with that of the calibration stage.
If we issue a damage alarm for a substructure when the corresponding stiffness ratio is smaller than 1 (stiffness loss is
larger than 0), it is seen that no false-negative or false-positive damage indications are produced for either of the sensor
scenarios. There are two stiffness scaling parameters,θ2,+x for the DP3Bu.fs case andθ2,−x for the DP3Bu.ps case,
with the stiffness ratio larger than 1 (1.002); however, since they show a very smallincreasein stiffness, they are not
indicative of damage. Therefore, no threshold is required for damage identification in the proposed method, at least
in the simulated data case. For the identified damage extent, we observe that the identified stiffness ratios are close to
their actual values (0.943 and 0.887) for both the full-sensor and partial-sensor scenarios, and it is not surprising that
the identified values are more accurate for the full-sensor scenario.
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TABLE 6: Stiffness ratios for the full-sensor scenario in simulated Phase II benchmark (Example 2)

RB.fsa DP1B.fs DP2B.fs DP3B.fs DP3Bu.fs

Parameter
MAP value
(θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

θ1,+x 1.002 0.435 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ2,+x 0.999 0.535 1.000 0.000 1.000 0.000 1.000 0.000 1.002 0.048
θ3,+x 1.000 0.748 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ4,+x 0.996 0.510 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ1,+y 0.999 0.221 0.889 0.158 0.940 0.154 0.885 0.159 1.000 0.000
θ2,+y 0.998 0.281 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ3,+y 1.002 0.373 1.000 0.000 1.000 0.000 0.946 0.069 1.000 0.000
θ4,+y 0.998 0.275 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ1,−x 0.994 0.230 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ2,−x 0.999 0.233 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ3,−x 1.006 0.388 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ4,−x 1.001 0.216 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ1,−y 1.003 0.172 0.885 0.155 0.947 0.149 0.878 0.156 0.887 0.149
θ2,−y 1.004 0.227 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ3,−y 0.995 0.302 1.000 0.000 1.000 0.000 0.948 0.064 0.950 0.058
θ4,−y 1.003 0.226 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

a .fs denotes the full-sensor scenario.

TABLE 7: Stiffness ratios for the partial-sensor scenario in simulated Phase II benchmark (Example 2)

RB.psa DP1B.ps DP2B.ps DP3B.ps DP3Bu.ps

Parameter
MAP value
(θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

MAP ratio
(θ̃/θ̂u)

c.o.v.
(%)

θ1,+x 1.047 0.406 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ2,+x 0.997 0.534 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ3,+x 0.958 0.808 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ4,+x 0.996 0.505 1.000 0.000 1.000 0.000 1.002 0.047 1.000 0.000
θ1,+y 1.007 0.220 0.909 0.162 0.946 0.149 0.870 0.164 1.000 0.000
θ2,+y 0.997 0.282 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ3,+y 0.996 0.374 1.000 0.000 1.000 0.000 0.946 0.070 1.000 0.000
θ4,+y 0.995 0.277 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ1,−x 0.973 0.242 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ2,−x 1.002 0.232 1.000 0.000 1.002 0.075 1.000 0.000 1.002 0.077
θ3,−x 1.023 0.379 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ4,−x 1.002 0.214 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ1,−y 1.016 0.169 0.939 0.156 0.941 0.148 0.890 0.160 0.885 0.145
θ2,−y 1.004 0.226 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
θ3,−y 0.982 0.306 1.000 0.000 1.000 0.000 0.949 0.065 0.951 0.057
θ4,−y 1.002 0.225 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

a .ps denotes the partial-sensor scenario.
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FIG. 6: Comparison of stiffness reduction ratios of three methods for the 16 substructures: (i) The method by Yuen et
al. [18]; (ii) The proposed hierarchical method without utilizing damage sparseness (Algorithm 1); (iii) The proposed
method utilizing sparseness (Algorithm 2); using the IASC-ASCE Phase II Simulated Benchmark data for four dam-
age scenarios and two instrumentation scenarios: (a) full-sensor; (b) partial-sensor (red bars indicate actual damage
locations).

In Fig. 6, the proposed Algorithms 1 and 2 are compared with the method by Yuen et al. [18] by presenting the
stiffness reduction ratios for various damage cases, where these ratios are defined as the difference between each MAP
valueθ̂uv of the stiffness scaling parameter from the calibration stage and the MAP valueθ̃uv from the current moni-
toring stage, normalized bŷθuv. For the method by Yuen et al. [18], the required hyper-parameters are not optimized
based on the data but are, instead, determined a priori using judgment. By comparing the results in Fig. 6, it is seen
that Algorithm 1 gives more accurate stiffness reduction ratios than the method by Yuen et al. [18], especially in the
partial-sensor case. This shows the benefit of the hierarchical Bayesian modeling and learning of the hyper-priors.
The results for Algorithm 2, which further optimizes the hyper-parametersα, λ, andζ, show the substantial improve-
ment in accuracy that comes from exploiting damage sparseness; there are no false or missed damage indications.
Algorithm 2 therefore has the ability to allow much higher-resolution damage localization than the method by Yuen
et al. [18]. Thus, it is concluded that the proposed hierarchical sparse Bayesian learning framework is a very effective
strategy for structural health monitoring.

To demonstrate the effect of hyper-priorp (α|λ) in (12) on the spatial sparseness in the inferred stiffness reduc-
tions, the results of stiffness reduction ratios from running Algorithm 2 with different choices of hyper-parameterλ

are given in Figs. 7(a)(i)–7(d)(i) for the partial-sensor scenario. Note thatλ = 0 corresponds to the original sparse
Bayesian learning formulation with a uniform hyper-prior overα as in [19]. By increasing the value ofλ, fewer com-
ponents or smaller values ofθ show a stiffness reduction. Whenλ is sufficiently large, the inferred damage pattern
becomes overly sparse, as shown by the third and fourth rows in Figs. 7(a)(i)–7(d)(i), which also gives the value ofλ

for which the change in values of the stiffness reduction ratios occurs. Recall that the actual damage can be accurately
identified with no false-positive and false-negative alarms using Algorithm 2, which optimizes all hyper-parameters,
and gives the results shown in the final rows of Figs. 7 (a)(i)–7(d)(i), including the optimal value ofλ, that were
previously shown in Fig. 6. Therefore, the automatic estimation ofλ in Algorithm 2 is reliable for inferring accurate
stiffness reductions with an appropriate sparseness level. This is a very useful advantage of the proposed algorithm
since no user intervention is required to selectλ.

In addition, we consider another case by defining a hyper-priorp (γ|κ) over the precision parameters,γj = α−1
j ,

j = 1, . . . , n, as usually used in sparse Bayesian learning [19]. The corresponding optimization of hyper-parameters
γ andκ, as derived from the evidence maximization strategy, is in Appendix B. We run Algorithm 2 incorporating
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FIG. 7: Comparison of stiffness reduction ratios for the 16 substructures using two different hyper-priors: (i)p (α|λ)
defined in (12) and (ii)p (γ|κ) in (B2), using the IASC-ASCE Phase II Simulated Benchmark partial-sensor data, and
for the damage patterns: (a) DP1B.ps, (b) DP2B.ps, (c) DP3B.ps, and (d) DP3Bu.ps (red bars indicate actual damage
locations).

the alternative hyper-prior and its optimization and present the results in Figs. 7(a)(ii)–7(d)(ii). It is found that many
components ofθ that correspond to undamaged substructures are changed during the updating, especially when the
value ofκ is large. This hyper-prior on the precision parameters is therefore not as effective as the choice of hyper-prior
on the varianceα defined in (12).

To further portray the damage, the probability of damage for all substructures for different severities is calculated
using Eq. (51). The damage probability curves for the sixteen stiffness scaling parametersθuv are shown in Fig. 8 for
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FIG. 8: Probability of damage exceedingf for the 16 substructures using the IASC-ASCE Phase II Simulated Bench-
mark data: (a) DP1B.ps, (b) DP2B.ps, (c) DP3B.ps, and (d) DP3Bu.ps.

the partial-sensor scenario case. All the actual damaged substructures are clearly shown to have a damage probability
of almost unity with a large damage extent. Consider the−y face of the first story as an example. For cases DP3B.ps
and DP3Bu.ps, this substructure has a damage probability of almost unity for a stiffness loss ratio less than 10.0%
and a probability of almost zero that the damage exceeds 12% (its actual value is 11.2%). However, for the case
DP1B.ps, this substructure is inferred to have a damage probability of almost unity for a stiffness loss ratio less
than 6.0% and a probability of almost zero that the damage exceeds 7%, showing an underestimation of the damage
extent. For the case of DP2B.ps, this substructure has a damage probability of almost unity for a damage extent of
less than 5% and a probability of almost zero when the stiffness loss ratio exceeds 6.2% (its actual value is 5.7%).
For the undamaged substructures, probabilities become zero when the damage exceeds 0.5%, showing a very small
plausibility that damage has happened in these substructures. Compared with existing Bayesian updating methods
[2, 3, 12, 16–18], the confidence for correct damage indication is very high in the proposed method. The reduced
uncertainty for the inferred stiffness scaling parameterθ from the proposed hierarchical sparse Bayesian learning
framework helps suppress the occurrence of false and missed damage indications and increases the confidence of
correct damage indications.

5. CONCLUSION

A new hierarchical sparse Bayesian learning methodology for probabilistic structural health monitoring with noisy
incomplete modal data has been proposed. The method employs system modal parameters of the structure as extra
variables and a multi-level hierarchical Bayesian model is constructed. Rather than directly solving the challenging
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nonlinear inverse problem related to eigenvalue equation, the proposed formulation applies an efficient iterative proce-
dure that involves a series of coupled linear regression problems and provides a tractable form for the sparse Bayesian
learning. The new algorithm estimates all uncertain hyper-parameters solely from the data, giving an algorithm for
which no user intervention is needed. The illustrative examples confirm the effectiveness and robustness of the new
approach.

For the first example, comparison of the results with those of the state-of-the-art Bayesian updating method in
[18] demonstrates the ability of the proposed method to update a structural model during a calibration stage for an
undamaged building, showing the benefit of the hierarchical Bayesian modeling and learning of the hyper-parameters.
The second example using the IASC-ASCE Phase II Simulated Benchmark data shows that for all cases, the simulated
damage under study is reliably detected and the accuracy of the identified stiffness reduction is greatly enhanced by
exploiting damage sparseness. Compared with the Bayesian updating method in [18], the occurrence of false-positive
and false-negative damage detection in the presence of modeling errors is more effectively suppressed by the proposed
method. Both methods also have an important advantage for actual applications which is that they can update the
structural stiffness efficiently based on the information in the modal data from dynamic testing without knowing
if any significant modes are missing in the modal data set, or whether the ordering of the modes switches due to
damage.

In future work, we would like to apply the proposed method to real data from a structure that was instrumented
before and after damage occurred.
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APPENDIX A. MAP ESTIMATION OF THE HYPER-PARAMETERS α, λ, AND ζ USING THE
EVIDENCE STRATEGY

The MAP estimates ofα, λ, andζ can be obtained by maximizing the logarithm function of the pseudo-evidence (45)
without including the constants that do not depend onα, λ, andζ. The objective function is

J (α, λ, ζ) = −1
2

log
∣∣∣∣A +

(
β̃H̃

T
H̃

)−1
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(
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(
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αj + log ζ− ζλ

(A.1)

where matrixH̃, vectorb̃, andβ̃ are to be evaluated at their MAP values.
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whereΣθ is the covariance matrix ofθ shown after (46).
Then
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Using the Woodbury matrix identity, we get:
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UsingΣ−1
θ = A−1 + β̃H̃
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)−1

H̃
T

b̃−
(
θ̂u − θ̃

))

= β̃

(
θ̂u −

(
H̃

T
H̃

)−1

H̃
T

b̃−
(
θ̂u − θ̃

))T

H̃
T

H̃
(

θ̂u −
(

H̃
T

H̃
)−1

H̃
T

b̃−
(
θ̂u − θ̃

))

+ β̃
(

H̃
T

H̃θ̂u − H̃
T

b̃
)T (

θ̂u − θ̃
)
− β̃

(
θ̂u − θ̃

)T

H̃
T

H̃
(
θ̂u − θ̃

)

= β̃

(
θ̂u −

(
H̃

T
H̃

)−1

H̃
T

b̃−
(
θ̂u − θ̃

))T

H̃
T

H̃
(

θ̂u −
(

H̃
T

H̃
)−1

H̃
T

b̃−
(
θ̂u − θ̃

))

+
(
β̃H̃

T
H̃θ̂u + A−1θ̂u −Σ−1

θ θ̃
)T (

θ̂u − θ̃
)
− β̃

(
θ̂u − θ̃

)T

H̃
T

H̃
(
θ̂u − θ̃

)

= β̃

(
θ̂u −

(
H̃

T
H̃

)−1

H̃
T

b̃−
(
θ̂u − θ̃

))T

H̃
T

H̃
(

θ̂u −
(

H̃
T

H̃
)−1

H̃
T

b̃−
(
θ̂u − θ̃

))

+
(
θ̂u − θ̃

)T

Σ−1
θ

(
θ̂u − θ̃

)
− β

(
θ̂u − θ̃

)T

H̃
T

H̃
(
θ̂u − θ̃

)

= β̃

(
θ̃−

(
H̃

T
H̃

)−1

H̃
T

b̃
)T

H̃
T

H̃
(

θ̃−
(

H̃
T

H̃
)−1

H̃
T

b̃
)

+
(
θ̂u − θ̃

)T

A−1
(
θ̂u − θ̃

)

(A.5)

Then the derivative of the objective function in (A1) with respect toαj is given by:

∂J (α, λ, ζ)
∂αj

=
1
2

∂

∂αj

[
− log

∣∣∣∣A +
(
β̃H̃

T
H̃

)−1
∣∣∣∣−

(
θ̂u −

(
H̃

T
H̃

)−1

H̃
T

b̃
)T (

A +
(
β̃H̃

T
H̃

)−1
)−1

×
(

θ̂u −
(

H̃
T

H̃
)−1

H̃
T

b̃
)
− 2λ

n∑

j=1

αj

]
=

1
2

[
−α−1

j + α−2
j (Σθ)jj + α−2

j

(
θ̂u − θ̃

)2

j
− 2λ

] (A.6)

Setting the derivative in (A6) to zero leads to the update formula given in (46).
Following the corresponding procedure for the parameterλ, we set the derivative of the objective function in (A1)

with respect toλ to be zero:
∂J (α, λ, ζ)

∂λ
=

n

λ
−

n∑

i=1

αj − ζ = 0 (A.7)

which gives the optimal estimatẽλ as in (47).
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Finally, the MAP estimate ofζ is obtained by setting the following derivative of the objective function:

∂J (α, λ, ζ)
∂ζ

=
1
ζ
− λ (A.8)

which gives the MAP valuẽζ shown in (48).

APPENDIX B. MAP ESTIMATION OF THE HYPER-PARAMETER α WHEN USING THE
EXPONENTIAL HYPER-PRIOR OVER EACH PRECISION α

−1
j

Following [19], a gamma hyper-prior is chosen for the precision parametersγj = α−1
j :

p (γj |χ, κ) = Gam (γj |χ, κ) =
κχ

Γ (χ)
γ

χ−1
j exp (−κγj) (B.1)

We fix χ = 1 and so obtain the exponential hyper-prior forγj , which is the maximum entropy PDF with support
[0,∞) for given meanκ−1. Then the prior PDF over the precisionγ =

[
α−1

1 , . . . , α−1
n

]
becomes:

p (γ|κ) = κnexp


−κ

n∑

j=1

γj


 = κnexp


−κ

n∑

j=1

α−1
j


 (B.2)

Following the corresponding procedure in Appendix A, we find the MAP valueα̃ by maximizing:

p
(
α|ξ̃, ω̂

2
, ψ̂, θ̃u

)
∝ p

(̂
θu|ω̃2, ϕ̃, β̃,α

)
p (γ|κ) = N

(
θ̂u|

(
H̃

T
H̃

)−1

H̃
T

b̃, D
)
· κ−nexp


−κ

n∑

j=1

α−1
j


 (B.3)

Maximizing the logarithm function of (B3) with respect toαj gives the MAP estimateαj as:

α̃j = (Σθ)jj +
(
θ̂u − θ̃

)2

j
+ κ (B.4)
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