RT Journal Article ID 6d4d39a77b42d796 A1 Fantuzzi, Nicholas A1 Trovalusci, Patrizia A1 Luciano, Raimondo T1 MULTISCALE ANALYSIS OF ANISOTROPIC MATERIALS WITH HEXAGONAL MICROSTRUCTURE AS MICROPOLAR CONTINUA JF International Journal for Multiscale Computational Engineering JO JMC YR 2020 FD 2020-04-21 VO 18 IS 2 SP 265 OP 284 K1 multiscale K1 anisotropic materials K1 finite element method K1 Cosserat (micropolar) K1 homogenization K1 RVE AB This work discusses the advantages of micropolar theory in modeling anisotropic composite materials with microstructure. A homogenized constitutive model starting from a representative volume element is proposed in order to find an equivalent continuum. Classical (e.g., Cauchy of Grade 1) continua are not always suitable to accurately approximate the behavior of such composites because no size effects, nor lack of symmetries in strain and stress, can be taken into account. This study focuses on composites made of hexagonal rigid particles which interact among themselves through elastic interfaces, so that the deformation energy of the material is concentrated only at the interfaces. Three particle geometries are investigated such as orthotetragonal, auxetic, and chiral. Novel results have been achieved by presenting the behavior of panels with various material symmetries and subjected to concentrated loads. PB Begell House LK https://www.dl.begellhouse.com/journals/61fd1b191cf7e96f,453304c124256f66,6d4d39a77b42d796.html