Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

On the Relationship between Fluid Velocity and de Broglie's Wave Function and the Implications to the Navier - Stokes Equation

Volume 29, Issue 1, 2002, 13 pages
DOI: 10.1615/InterJFluidMechRes.v29.i1.30
Get accessGet access

ABSTRACT

By exploring the relationship between the group velocity of the de Broglie's waves and a particle velocity we can demonstrate the existence of a close relationship between the continuity equation and the Schrodinger's equation. This relationship leads to the proportionality between the fluid velocity v and the corresponding de Broglie's wave's phase at the same location. That is, the existence of a scalar function q proportional to the phase of the de Broglie's wave, such that v = Сq can be proven without reference to the flow being inviscid. We then proceed to show that the Navier-Stokes equation in the case of constant viscosity incompressible fluid is equivalent to a reaction-diffusion equation for the wave function of the de Broglie's wave associated to the moving fluid element. A general solution to this equation, written in terms of the Green's functions, and the criterion for the solution to be stable is presented. Finally, in order to provide an example, the procedure is applied to obtain the solution for the simplest case of the Burgers' equation.

CITED BY
  1. Prodanov Dimiter, Analytical and Numerical Treatments of Conservative Diffusions and the Burgers Equation, Entropy, 20, 7, 2018. Crossref

  2. Horák Vladimír, Kulish Vladimir, Duc Linh Do, Chaotic behaviour of the exact solution to the Navier-Stokes equation: Transition to turbulence, 2046, 2018. Crossref

  3. Prodanov Dimiter, The Burgers equations and the Born rule, Chaos, Solitons & Fractals, 144, 2021. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain