Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Heat Transfer in Magnetohydrodynamic Hiemenz Flow of a Micropolar Fluid

Volume 32, Issue 2, 2005, pp. 123-138
DOI: 10.1615/InterJFluidMechRes.v32.i2.10
Get accessGet access

ABSTRACT

A boundary layer analysis is presented for studying the effects of heat transfer and transverse magnetic field on Hiemenz flow of a micropolar incompressible, viscous, electrically conducting fluid impinging normal to a plate. Numerical solutions for the governing momentum, angular momentum and energy equations are given. A discussion has been provided for the effect of Hartman number, Prandtl number and micropolar parameters on Hiemenz flow (two-dimensional flow of a fluid near a stagnation point). Results for the details of the velocity, angular velocity and temperature distributions as well as the skin friction, wall couples stress and the rate of heat transfer are shown graphically.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain