Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Medicinal Mushrooms
IF: 1.423 5-Year IF: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Print: 1521-9437
ISSN Online: 1940-4344

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019031841
pages 931-942

Identification, Optimization of Culture Conditions, and Bioactive Potential of Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycetes) Mycelium Isolated from Fruiting Body

Vikas Kaushik
Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039, Sonepat, Haryana, India
Aditi Arya
Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal 131039, Sonepat, Haryana, India
Anil Sindhu
Department of Biotechnology, Deenbandhu Chhotu Ram University of Science &Technology, Murthal 131039, Sonepat, Haryana, India
Ajay Singh
Haryana Agro Industries Corporation, Research and Development Centre, Murthal 131039, Sonepat, Haryana, India


The present study deals with the challenges acquainted with in vitro culture of Ophiocordyceps sinensis. We have optimized the culture conditions for the growth of O. sinensis mycelium in semi-synthetic liquid media and determined antibacterial potential of the cultured mycelia extracts. In this study, mycelia were isolated from fruiting bodies and the isolate was identified as O. sinensis anamorph based on sequencing of internal transcribed spacer region. We investigated different culture conditions to optimize the growth of mycelia. Through this investigation, the isolated strain was observed to have its optimum growth at temperature (20°C), which yielded biomass of 12.38 g/L and pH (6.0) yielded biomass of 11.24g/L. Further to augment the production of mycelia, different carbon and nitrogen sources were optimized for mycelium growth in liquid media, out of which sucrose and corn steep powder proved to be the best carbon and nitrogen sources yielding biomass 14.01 g/L and 14.14 g/L, respectively. The evaluation of aqueous and methanolic extracts for antibacterial activity depicted that these extracts are active against all bacterial strains tested here. Aqueous extract depicted minimum inhibitory concentration (MIC) of 0.312, 0.019, 0.078, 0.312, and 0.625 mg/mL and methanolic extract depicted 1.25, 0.078, 0.009, 1.25, and 0.156 mg/mL against Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes, respectively. These results led to optimization of enhanced biomass production of O. sinensis, which can be a better alternative approach for further physiological studies and large-scale cultivation of this mushroom for its utilization for therapeutics and nutraceutical values.


  1. Seth R, Haider SZ, Mohan M. Pharmacology, phytochemistry and traditional uses of Cordyceps sinensis (Berk.) Sacc: a recent update for future prospects. Indian J Trad Know. 2014;13(3):551-56.

  2. Joshi RK. Phytochemical and medicinal aspects of Cordyceps sinensis (Berk.): A review. J Med Plants Stud. 2016;4(1):65-67.

  3. Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013;65(4):474-93.

  4. Zhou X, Gong Z, Su Y, Lin J, Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 2009;61(3):279-91.

  5. Cainong D, Tao Y, Tiantian CA. A comparative study of antimicrobial, antioxidant and cytototoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16(5):485-95.

  6. Sapan KS, Nandini G, Narender SA. Evaluation of mycelia nutrients, bioactive compounds and antioxidants of five Himalayan entomopathogenic Ascomycetes fungi from India. Int J Med Mushrooms. 2015;17(7):661-69.

  7. Wai YC, Xue QW, Ka CS, Ang XS. Cosmetics and skincare benefits of cultivated mycelia from the Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes). Int J Med Mushrooms. 2018;20(7):623-36.

  8. Hobbs CH. Medicinal mushrooms: an exploration of tradition, healing and culture. Santa Cruz (CA): Botanica Press; 1995:251.

  9. Liu ZY, Yao YJ, Liang ZQ, Pegler DN, Chase MW. Molecular evidence for the anamorph-telemorph connection in Cordyceps sinensis. Mycol Res. 2001;105(7):827-32.

  10. Mamta, Mehrotra S, Amitabh, Kirar V, Vats P, Nandi SP, Negi PS, Mishra K. Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis. Indian J Exp Biol. 2015;53(1):36-43.

  11. Kuniyal CP, Sundriyal RC. Conservation salvage of Cordyceps sinensiscollectionin the Himalayan Mountains is neglected. Ecosyst Serv. 2013;3:40-43.

  12. Kai Y, Meng Y, Xiao L, Zuji Z. The artificial cultivation of medicinal caterpillar fungus, Ophiocordyceps sinensis (Ascomycetes): a review. Int J Med Mushrooms. 2013;15(5):425-34.

  13. Yu Y. Deep fermentation technology for Cordyceps sinensis Sacc. Chinese Patent. 1997;CN1036531C.

  14. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. Phylogenetic classification of Cordyceps and clavicipitaceous fungi. Stud Mycol. 2007;57:5-59.

  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-74.

  16. AOAC. Official methods of analysis of AOAC International. 17th ed. Gaithersburg, MD: AOAC, 2000.

  17. Filipa SR, Lillian B, Ricardo CC, Ana C, Leo JLD, Van G, Marina S, Isabel CFRF. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem Toxicol. 2013;62:91-98.

  18. Liu Z, Liang Z, Liu A, Yao Y, Yu Z. Molecular evidence for telemorph-anamorph connections in Cordyceps based on ITS-5.8S rDNA sequences. Mycol Res. 2002;106(9):1100-08.

  19. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109(6):6241-46.

  20. Chen YQ, Wang N, Qu LH, Li TH, Zhang WM. Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem Syst Ecol. 2001;29(6):597-607.

  21. Hsu TH, Shiao LH, Hsiea C, Chang DM. A comparison of chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem. 2002;78(8):463-69.

  22. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-20.

  23. Dong CH, Yao YJ. Nutritional requirements of mycelial growth of Cordyceps sinensisin submerged culture. J Appl Microbiol. 2005;99(3):483-92.

  24. Yun FK, Jian CL, Chien SL, Chen YC, Jan M, Chuan SL, Shun FT, David MO, Chia CL, Hsin CL, John DY. Isolation, culture and characterization of Hirsutella sinensis mycelium from caterpillar fungus fruiting body. PLoS ONE. 2017;e0168734.

  25. Amin SMR, Alam N, Tania M, Khan MA. Study of mycelia growth of Cordyceps sinensis in different media at different pH and temperature. Bangladesh J Mushrooms. 2008;2(2):43-48.

  26. Dong CH, Yao YJ. On the reliability of fungal materials used in the studies on Ophiocordyceps sinensis. J Ind Microbiol Biotechnol. 2011;38(8):1027-35.

  27. Dai L, Lan J. Producing process of Chinese caterpillar fungus hypha fermentation. 1994; Patent CN1095103A.

  28. Choi GS, Shin YS, Kim JE, Ye YM, Parks HS. Five cases of food allergy to vegetable worm (Cordyceps sinensis) showing cross reactivity with silkworm pupae. Allergy. 2010;65(9):1196-97.

  29. Chattopadhyay S, Patra R, Ramamurthy T, Chowdhury A, Santra A, Dhali G, Bhattacharya SK, Berg DE, Nair GB, Mukhopadhyay AK. PCR assay for rapid detection and genotyping of Helicobacter pylori directly from biopsy specimens. J Clin Microbiol. 2004;42(6):2821-24.

Articles with similar content:

Optimization of the Production of Extracellular Polysaccharide from the Shiitake Medicinal Mushroom Lentinus edodes (Agaricomycetes) Using Mutation and a Genetic Algorithm−Coupled Artificial Neural Network (GA-ANN)
International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 7
Agbaje Lateef, Adeyemi Ojutalayo Adeeyo, Evariste Bosco Gueguim-Kana
Comparison of Antioxidant and Antiproliferation Activities of Polysaccharides from Eight Species of Medicinal Mushrooms
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 3
Yangyang Yong, Yifan Gu, Zeliang Wang, Shizhu Zhang, Peiying Chen, Ling Lu
Optimization of Liquid Fermentation Conditions and Protein Nutrition Evaluation of Mycelium from the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes)
International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 8
Yanhong Liu, Han Liu, Jie Gang
Antibacterial Activity of Wild Xylaria sp. Strain R005 (Ascomycetes) Against Multidrug-Resistant Staphylococcus aureus and Pseudomonas aeruginosa
International Journal of Medicinal Mushrooms, Vol.14, 2012, issue 1
Annamalai Thalavaipandian, Veluchamy Ramesh, U. S. Ezhil Arivudainambi, Chandran Karunakaran, Ayyappan Rajendran
Biological Activities of the Polysaccharides Produced from Different Sources of Xylaria nigripes (Ascomycetes), a Chinese Medicinal Fungus
International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 2
Mu-Chun Hung, Fang-Yi Lin, Wai-Jane Ho, Zeng-Chin Liang, Tai-Hao Hsu, Shih-Liang Chang, Chia-Chun Tsai, Chang-Wei Hsieh