Library Subscription: Guest
Critical Reviews™ in Eukaryotic Gene Expression

Published 6 issues per year

ISSN Print: 1045-4403

ISSN Online: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

The Biology of Toll-Like Receptor 9 and Its Role in Cancer

Volume 30, Issue 5, 2020, pp. 457-474
DOI: 10.1615/CritRevEukaryotGeneExpr.2020036214
Get accessDownload

ABSTRACT

Toll-like receptor 9 (TLR9) plays a fundamental role in innate immune responses through pathogen-associated and danger-associated molecular pattern recognition. Ligand recognition by TLR9 results in activation of several signaling pathways, including those involving nuclear factor-kappa B, mitogen-activated protein kinases, and interfer-on-regulatory factors, which promote secretion of proinflammatory cytokines and type I interferons. TLR9 is expressed by immune-mediated cells and in clinical specimens and cell lines of various human cancers. TLR9 appears to act as a double-edged sword in cancer, with some studies indicating that it is associated with increased malignancy and others indicating that it contributes to immune response against cancer. At present, the mechanisms underlying the role of TLR9 in cancer pathophysiology are not completely clear, although various TLR9 agonists and antagonists are being tested in in vitro and in vivo cancer models as well as clinical trials. This review summarizes the current state of knowledge regarding TLR9 features, isoforms, structure, ligands, and signaling, and discusses the roles of TLR9 in cancer pathogenesis. Recent efforts to utilize TLR9 agonists and antagonists as potential anticancer immunotherapy agents are also highlighted.

REFERENCES
  1. O'Neill LAJ, Golenbock D, Bowie AG. The history of Toll-like receptors-redefining innate immunity. Nat Rev Immunol. 2013;13(6):453-60.

  2. Nie L, Cai S-Y, Shao J-Z, Chen J. Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol. 2018;9:1523.

  3. Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol. 2007; 19(1): 39-45.

  4. El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors ac-tivation, signaling, and targeting: An overview. Bull Natl Res Cent. 2019;43(1):187.

  5. Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci. 2019;233:116671.

  6. Song Y, Shou LM, Ai L-Y, Bei Y, Chen M-T. Mini-review: The non-immune functions of Toll-like receptors. Crit Rev Eukaryot Gene Expr. 2019;29(1):37-45.

  7. Urban-Wojciuk Z, Khan MM, Oyler BL, Fahraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp T, Goodlett DR. The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 2019;10:2388.

  8. Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of Toll-like receptors in cancer: A double-edged sword for defense and offense. Arch Pharm Res. 2012;35(8):1297-316.

  9. Yusuf N. Toll-like receptor mediated regulation of breast cancer: A case of mixed blessings. Front Immunol. 2014;5:224.

  10. Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv Pharm Bull. 2015;5(Suppl 1):605-14.

  11. Jahantigh D, Salimi S, Alavi-Naini R, Emamdadi A, Owaysee Osquee H, Farajian Mashhadi F. Association between TLR4 and TLR9 gene polymorphisms with de-velopment of pulmonary tuberculosis in Zahedan, south-eastern Iran. Sci World J. 2013;2013:534053.

  12. Sinha SS, Cameron J, Brooks JC, Leifer CA. Complex negative regulation of TLR9 by multiple proteolytic cleavage events. J Immunol. 2016;197(4):1343-52.

  13. Fukui R, Yamamoto C, Matsumoto F, Onji M, Shibata T, Murakami Y, Kanno A, Hayashi T, Tanimura N, Yoshida N, Miyake K. Cleavage of Toll-like receptor 9 ectodomain is required for in vivo responses to single strand DNA. Front Immunol. 2018;9:1491.

  14. Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E, Uchiyama S, Miyake K, Shimizu T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature. 2015;520(7549):702-5.

  15. Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity. 2018;48(4): 649-58.

  16. Collins B, Wilson IA. Crystal structure of the C-terminal domain of mouse TLR9. Proteins. 2014;82(10):2874-8.

  17. McKelvey KJ, Highton J, Hessian PA. Cell-specific expression of TLR9 isoforms in inflammation. J Autoimmun. 2011;36(1):76-86.

  18. Matz KM, Guzman RM, Goodman AG. The role of nucleic acid sensing in controlling microbial and autoimmune disorders. In: Vanpouille-Box C, Galluzzi L, editors. International review of cell and molecular biology, chap. 2. Academic Press; 2019. p. 35-136.

  19. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603-7.

  20. Yu L, Feng Z. The role of Toll-like receptor signaling in the progression of heart failure. Mediat Inflamm. 2018;2018:9874109.

  21. Pohar J, Lainscek D, Ivicak-Kocjan K, Cajnko M-M, Jerala R, Bencina M. Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nat Commun. 2017;8(1):15363.

  22. Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrog Tissue Repair. 2010;3:21.

  23. Baumann CL, Aspalter IM, Sharif O, Pichlmair A, Bluml S, Grebien F, Bruckner M, Pasierbek P, Aumayr K, Planyavsky M, Bennett K, Colinge J, Knapp S, Superti-Furga G. CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med. 2010;207(12):2689-701.

  24. Luo L, Lucas RM, Liu L, Stow JL. Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci. 2019;133(5):jcs239194.

  25. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499-511.

  26. Suthers AN, Sarantopoulos S. TLR7/TLR9- and B cell receptor-signaling crosstalk: Promotion of potentially dan-gerous B cells. Front Immunol. 2017;8:775.

  27. Wu Y, Tang W, Zuo J. Toll-like receptors: Potential targets for lupus treatment. Acta Pharmacol Sin. 2015; 36(12):1395-407.

  28. Bonham KS, Orzalli MH, Hayashi K, WolfAI, Glanemann C, Weninger W, Iwasaki A, Knipe DM, Kagan JC. A pro-miscuous lipid-binding protein diversifies the subcellular sites of Toll-like receptor signal transduction. Cell. 2014;156(4):705-16.

  29. Nagpal K, Plantinga TS, Wong J, Monks BG, Gay NJ, Netea MG, Fitzgerald KA, Golenbock DT. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MYD88 binding and reduced TLR2/TLR4 signaling. J Biol Chem. 2009;284(38):25742-8.

  30. Luo L, Curson JEB, Liu L, Wall AA, Tuladhar N, Lucas RM, Sweet MJ, Stow JL. SCIMP is a universal Toll-like receptor adaptor in macrophages. J Leukoc Biol. 2020;107(2):251-62.

  31. Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can Toll-like receptors open the door to oncogenesis? World J Hepatol. 2016;8(3):162-82.

  32. Song IJ, Yang YM, Inokuchi-Shimizu S, Roh YS, Yang L, Seki E. The contribution of Toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer. 2018;142(1):81-91.

  33. Tohme S, Yazdani HO, Liu Y, Loughran P, van der Windt DJ, Huang H, Simmons RL, Shiva S, Tai S, Tsung A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology. 2017;66(1):182-97.

  34. Watanabe A, Hashmi A, Gomes DA, Town T, Badou A, Flavell RA, Mehal WZ. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via Toll-like receptor 9. Hepatology. 2007;46(5):1509-18.

  35. Eiro N, Altadill A, Juarez LM, Rodriguez M, Gonzalez LO, Atienza S, Bermudez S, Fernandez-Garcia B, Fresno-Forcelledo MF, Rodrigo L, Vizoso FJ. Toll-like receptors 3, 4 and 9 in hepatocellular carcinoma: Relationship with clinicopathological characteristics and prognosis. Hepatol Res. 2014;44(7):769-78.

  36. Tanaka J, Sugimoto K, Shiraki K, Tameda M, Kusagawa S, Nojiri K, Beppu T, Yoneda K, Yamamoto N, Uchida K, Kojima T, Takei Y. Functional cell surface expression of Toll-like receptor 9 promotes cell proliferation and survival in human hepatocellular carcinomas. Int J Oncol. 2010;37(4):805-14.

  37. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorne SH, Monga SPS, Geller DA, Lotze MT, Tsung A. High mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology. 2012;55(6):1863-75.

  38. Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D, Lotze M, Tang D, Tsung A. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol. 2015;63(1):114-21.

  39. Mohamed FE, Al-Jehani RM, Minogue SS, Andreola F, Winstanley A, Olde Damink SWM, Damink SWM, Habtesion A, Malago M, Davies N, Luong TV, Dhillon AP, Mookerjee RP, Dhar DK, Jalan R. Effect of Toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int. 2015;35(3):1063-76.

  40. Rodriguez-Nuevo A, Diaz-Ramos A, Noguera E, Diaz-Saez F, Duran X, Munoz JP, Romero M, Plana N, Sebastian D, Tezze C, Romanello V, Ribas F, Seco J, Planet E, Doctrow SR, Gonzalez J, Borras M, Liesa M, Palacin M, Vendrell J, Villarroya F, Sandri M, Shirihai O, Zorzano A. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J. 2018;37(10):E96553.

  41. Zhang Y, Lin A, Zhang C, Tian Z, Zhang J. Phosphorothioate-modified CpG oligodeoxynucleotide (CpG ODN) induces apoptosis of human hepatocellular carcinoma cells independent of TLR9. Cancer Immunol Immunother. 2014;63(4):357-67.

  42. Zhang Y, Lin A, Sui Q, Zhang C, Tian Z, Zhang J. Phosphorothioate modification of the TLR9 ligand CpG ODN inhibits poly(I:C)-induced apoptosis of hepatocellular carcinoma by entry blockade. Cancer Lett. 2014;355(1):76-84.

  43. Behm B, Di Fazio P, Michl P, Neureiter D, Kemmerling R, Hahn EG, Strobel D, Gress T, Schuppan D, Wissniowski TT. Additive antitumour response to the rabbit VX2 hepatoma by combined radio frequency ablation and Toll like receptor 9 stimulation. Gut. 2016;65(1):134-43.

  44. de la Fuente S, Citores M-J, Lucena J-L, Munoz P, Cuervas-Mons V. TLR9-1486C/T polymorphism is associated with hepatocellular carcinoma recurrence after liver transplantation. Biomark Med. 2019;13(12):995-1004.

  45. Wang C, Cao S, Yan Y, Ying Q, Jiang T, Xu K, Wu A. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer. 2010;10:415.

  46. Sandholm J, Tuomela J, Kauppila JH, Harris KW, Graves D, Selander KS. Hypoxia regulates Toll-like receptor-9 expression and invasive function in human brain cancer cells in vitro. Oncol Lett. 2014;8(1):266-74.

  47. Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res MCR. 2006;4(7):437-47.

  48. Herrmann A, Cherryholmes G, Schroeder A, Phallen J, Alizadeh D, Xin H, Wang T, Lee H, Lahtz C, Swiderski P, Armstrong B, Kowolik C, Gallia GL, Lim M, Brown C, Badie B, Forman S, Kortylewski M, Jove R, Yu H. TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res. 2014;74(18):5218-28.

  49. Leng L, Jiang T, Zhang Y. TLR9 expression is associated with prognosis in patients with glioblastoma multiforme. J Clin Neurosci. 2012;19(1):75-80.

  50. Grauer OM, Molling JW, Bennink E, Toonen LWJ, Sutmuller RPM, Nierkens S, Adema GJ. TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol. 2008;181(10):6720-9.

  51. Li X, Liu D, Liu X, Jiang W, Zhou W, Yan W, Cen Y, Li B, Cao G, Ding G, Pang X, Sun J, Zheng J, Zhou H. CpG ODN107 potentiates radiosensitivity of human glioma cells via TLR9-mediated NF-KB activation and NO production. Tumour Biol. 2012;33(5):1607-18.

  52. Li X, Cen Y, Cai Y, Liu T, Liu H, Cao G, Liu D, Li B, Peng W, Zou J, Pang X, Zheng J, Zhou H. TLR9-ERK-mTOR signaling is critical for autophagic cell death induced by CpG oligodeoxynucleotide 107 combined with irradiation in glioma cells. Sci Rep. 2016;6:27104.

  53. Sandholm J, Selander KS. Toll-like receptor 9 in breast cancer. Front Immunol. 2014;5:330.

  54. Meseure D, Vacher S, Drak Alsibai K, Trassard M, Nicolas A, Leclere R, Lerebours F, Guinebretiere JM, Marangoni E, Lidereau R, Bieche I. Biopathological significance of TLR9 expression in cancer cells and tumor microenvironment across invasive breast carcinoma subtypes. Cancer Microenviron. 2016;9(2-3):107-18.

  55. Sandholm J, Kauppila JH, Pressey C, Tuomela J, Jukkola-Vuorinen A, Vaarala M, Johnson MR, Harris KW, Selander KS. Estrogen receptor-a and sex steroid hormones regulate Toll-like receptor-9 expression and invasive function in human breast cancer cells. Breast Cancer Res Treat. 2012;132(2):411-9.

  56. Wang W, Kong P, Ma G, Li L, Zhu J, Xia T, Xie H, Zhou W, Wang S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget. 2017;8(26):43180-91.

  57. Tuomela J, Sandholm J, Kaakinen M, Patel A, Kauppila JH, Ilvesaro J, Chen D, Harris KW, Graves D, Selander KS. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res Treat. 2013;142(3):477-87.

  58. Tuomela JM, Sandholm JA, Kaakinen M, Hayden KL, Haapasaari K-M, Jukkola-Vuorinen A, Kauppila JH, Lehenkari PP, Harris KW, Graves DE, Selander KS. Telomeric G-quadruplex-forming DNA fragments induce TLR9-mediated and LL-37-regulated invasion in breast cancer cells in vitro. Breast Cancer Res Treat. 2016;155(2):261-71.

  59. Sandholm J, Lehtimaki J, Ishizu T, Velu SE, Clark J, Harkonen P, Jukkola-Vuorinen A, Schrey A, Harris KW, Tuomela JM, Selander KS. Toll-like receptor 9 expression is associated with breast cancer sensitivity to the growth inhibitory effects of bisphosphonates in vitro and in vivo. Oncotarget. 2016;7(52):87373-89.

  60. Tuomela J, Sandholm J, Karihtala P, Ilvesaro J, Vuopala KS, Kauppila JH, Kauppila S, Chen D, Pressey C, Harkonen P, Harris KW, Graves D, Auvinen PK, Soini Y, Jukkola-Vuorinen A, Selander KS. Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer. Breast Cancer Res Treat. 2012;135(2):481-93.

  61. Damiano V, Garofalo S, Rosa R, Bianco R, Caputo R, Gelardi T, Merola G, Racioppi L, Garbi C, Kandimalla ER, Agrawal S, Tortora G. A novel Toll-like receptor 9 agonist cooperates with trastuzumab in trastuzumab-resistant breast tumors through multiple mechanisms of action. Clin Cancer Res. 2009;15(22):6921-30.

  62. Qiu J, Wang X, Guo X, Zhao C, Wu X, Zhang Y. Toll-like receptor 9 agonist inhibits ERalpha-mediated transactivation by activating NF-kappaB in breast cancer cell lines. Oncol Rep. 2009;22(4):935-41.

  63. Etokebe GE, Knezevic J, Petricevic B, Pavelic J, Vrbanec D, Dembic Z. Single-nucleotide polymorphisms in genes encoding Toll-like receptor-2, -3, -4, and -9 in case-control study with breast cancer. Genet Test Mol Biomark. 2009;13(6):729-34.

  64. Resler AJ, Malone KE, Johnson LG, Malkki M, Petersdorf EW, McKnight B, Madeleine MM. Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: A case-control study. BMC Cancer. 2013;13:219.

  65. Yang X, Cheng Y, Li C. The role of TLRs in cervical cancer with HPV infection: A review. Signal Transduct Target Ther. 2017;2:17055.

  66. Cannella F, Pierangeli A, Scagnolari C, Cacciotti G, Tranquilli G, Stentella P, Recin, N, Antonelli G. TLR9 is expressed in human papillomavirus-positive cervical cells and is overexpressed in persistent infections. Immunobiology. 2015;220(3):363-8.

  67. Lee J-W, Choi J-J, Seo ES, Kim MJ, Kim WY, Choi CH, Kim TJ, Kim BG, Song SY, Bae DS. Increased Toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog. 2007;46(11):941-7.

  68. Ghosh A, Dasgupta A, Bandyopadhyay A, Ghosh T, Dalui R, Biswas S, Banerjee U, Basu A. A study of the expression and localization of Toll-like receptors 2 and 9 in different grades of cervical intraepithelial neoplasia and squamous cell carcinoma. Exp Mol Pathol. 2015;99(3):720-4.

  69. Martinez-Campos C, Burguete-Garda AI, Madrid-Marina V. Role of TLR9 in oncogenic virus-produced cancer. Viral Immunol. 2017;30(2):98-105.

  70. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, Mansour M, Vincent I, Gissmann L, Iftner T, Sideri M, Stubenrauch F, Tommasino M. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. 2007;178(5):3186-97.

  71. Pandey NO, Chauhan AV, Raithatha NS, Patel PK, Khandelwal R, Desai AN, Choxi Y, Kapadia RS, Jain ND. Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Sci Rep. 2019;9:9729.

  72. Yang S, Liu L, Xu D, Li X. The relationship of the TLR9 and TLR2 genetic polymorphisms with cervical cancer risk: A meta-analysis of case-control studies. Pathol Oncol Res POR. 2020;26(1):307-15.

  73. Chauhan A, Pandey N, Raithatha N, Patel P, Desai A, Jain N. Absence of Toll-like receptor 9 Pro99Leu polymorphism in cervical cancer. F1000Research. 2018;7:606.

  74. Muzio M, Fonte E, Caligaris-Cappio F. Toll-like receptors in chronic lymphocytic leukemia. Mediterr J Hematol Infect Dis. 2012;4(1):E2012055.

  75. Liang X, Moseman EA, Farrar MA, Bachanova V, Weisdorf DJ, Blazar BR, Chen W. Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells. Blood. 2010;115(24):5041-52.

  76. Rybka J, Butrym A, Wrobel T, Jazwiec B, Bogucka-Fedorczuk A, Por^ba R, Kuliczkowski K. The expression of Toll-like receptors in patients with B-cell chronic lymphocytic leukemia. Arch Immunol Ther Exp. 2016;64(Suppl 1):147-50.

  77. Decker T, Peschel C. Effect of immunostimulatory CpG-oligonucleotides in chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2001;42(3):301-7.

  78. Chartomatsidou E, Ntoufa S, Kotta K, Rovida A, Akritidou MA, Belloni D, Ferrero E, Trangas T, Stavroyianni N, Anagnostopoulos A, Rosenquist R, Ghia P, Papakonstantinou N, Stamatopoulos K. Inhibition of EZH2 and immune signaling exerts synergistic antitumor effects in chronic lymphocytic leukemia. Blood Adv. 2019;3(12):1891-6.

  79. Fonte E, Apollonio B, Scarfo L, Ranghetti P, Fazi C, Ghia P, Caligaris-Cappio F, Muzio M. In vitro sensitivity of CLL cells to fludarabine may be modulated by the stimulation of Toll-like receptors. Clin Cancer Res. 2013;19(2):367-79.

  80. Smith TJ, Yamamoto K, Kurata M, Yukimori A, Suzuki S, Umeda S, Sugawara E, Kojima Y, Sawabe M, Nakagawa Y, Suzuki K, Crawley JTB, Kitagawa M. Differential expression of Toll-like receptors in follicular lymphoma, diffuse large B-cell lymphoma and peripheral T-cell lymphoma. Exp Mol Pathol. 2010;89(3):284-90.

  81. Qian J, Meng H, Lv B, Wang J, Lu Y, Su L, Zhao S, Li W. High expression levels of TLR9 and PD-L1 indicate a poor prognosis in patients with angioimmunoblastic T-cell lymphoma: A retrospective study of 88 cases in a single center. J Cancer. 2020;11(1):57-68.

  82. Nie M, Yang L, Bi X, Wang Y, Sun P, Yang H, Liu P, Li Z, Xia Y, Jiang W. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via TLR9 signaling. Clin Cancer Res. 2019;25(6):1867-79.

  83. Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, Wapnir I, Tibshirani RJ, Levy R. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: A phase I/II study. J Clin Oncol. 2010;28(28):4324-32.

  84. Frank MJ, Reagan PM, Bartlett NL, Gordon LI, Friedberg JW, Czerwinski DK, Long SR, Hoppe RT, Janssen R, Candia AF, Coffman RL, Levy R. In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 2018;8(10):1258-69.

  85. Zhao X, Zhang Z, Moreira D, Su Y-L, Won H, Adamus T, Dong Z, Liang Y, Yin HH, Swiderski P, Pillai RK, Kwak L, Forman S, Kortylewski M. B cell lymphoma immunotherapy using TLR9-targeted oligonucleotide STAT3 inhibitors. Mol Ther. 2018;26(3):695-707.

  86. Sagiv-Barfi I, Kohrt HE, Burckhardt L, Czerwinski DK, Levy R. Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood. 2015;125(13):2079-86.

  87. Wang D, Jiang W, Zhu F, Mao X, Agrawal S. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. Int J Oncol. 2018;53(3):1193-203.

  88. Noack J, Jordi M, Zauner L, Alessi D, Burch A, Tinguely M, Hersberger M, Bernasconi M, Nadal D. TLR9 agonist-induced cell death in Burkitt's lymphoma cells is variable and influenced by TLR9 polymorphism. Cell Death Dis. 2012;3(6):E323.

  89. Mollaki V, Georgiadis T, Tassidou A, Ioannou M, Daniil Z, Koutsokera A, Papathanassiou AA, Zintzaras E, Vassilopoulos G. Polymorphisms and haplotypes in TLR9 and MYD88 are associated with the development of Hod- gkin's lymphoma: A candidate-gene association study. J Hum Genet. 2009;54(11):655-9.

  90. Carvalho A, Cunha C, Almeida AJ, Osorio NS, Saraiva M, Teixeira-Coelho M, Pedreiro S, Torrado E, Domingues N, Gomes-Alves AG, Marques A, Lacerda JF, da Silva MG, Gomes M, Pinto AC, Torres F, Rendeiro P, Tavares P, Di Ianni M, Medeiros R, Heutink P, Bracci PM, Conde L, Ludovico P, Pedrosa J, Maciel P, Pitzurra L, Aversa F, Marques H, Paiva A, Skibola CF, Romani L, Castro AG, Rodrigues F. The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes Immun. 2012;13(2):197-201.

  91. Eiro N, Gonzalez L, Gonzalez LO, Andicoechea A, Fernandez-Diaz M, Altadill A, Vizoso FJ. Study of the expression of Toll-like receptors in different histological types of colorectal polyps and their relationship with colorectal cancer. J Clin Immunol. 2012;32(4):848-54.

  92. Gao C, Kozlowska A, Nechaev S, Li H, Zhang Q, Hossain DMS, Kowolik CM, Chu P, Swiderski P, Diamond DJ, Pal SK, Raubitschek A, Kortylewski M. TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy. Cancer Res. 2013;73(24):7211-21.

  93. Rosa R, Melisi D, Damiano V, Bianco R, Garofalo S, Gelardi T, Agrawal S, Di Nicolantonio F, ScarpaA, Bardelli A, Tortora G. Toll-like receptor 9 agonist IMO cooperates with cetuximab in K-ras mutant colorectal and pancreatic cancers. Clin Cancer Res. 2011;17(20):6531-41.

  94. Damiano V, Caputo R, Garofalo S, Bianco R, Rosa R, Merola G, Gelardi T, Racioppi L, Fontanini G, De Placido S, Kandimalla ER, Agrawal S, Ciardiello F, Tortora G. TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc Natl Acad Sci U S A. 2007;104(30):12468-73.

  95. Koo JE, Shin SW, Um SH, Lee JY. X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes. Mol Cancer. 2015;14:104.

  96. Dong T, Yi T, Yang M, Lin S, Li W, Xu X, Hu J, Jia L, Hong X, Niu W. Cooperation of a-galactosylceramide-loaded tumour cells and TLR9 agonists induce potent anti-tumour responses in a murine colon cancer model. Biochem J. 2016;473(1):7-19.

  97. Schmoll H-J, Wittig B, Arnold D, Riera-Knorrenschild J, Nitsche D, Kroening H, Mayer F, Andel J, Ziebermayr R, Scheithauer W. Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: A randomised, double-blind, placebo-controlled trial. J Cancer Res Clin Oncol. 2014;140(9):1615-24.

  98. Messaritakis I, Stogiannitsi M, Koulouridi A, Sfakianaki M, Voutsina A, Sotiriou A, Athanasakis E, Xynos E, Mavroudis D, Tzardi M, Souglakos J. Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS One. 2018;13(6):E0197327.

  99. Semlali A, Parine NR, Al Amri A, Azzi A, Arafah M, Kohailan M, Shaik JP, Almadi MA, Aljebreen AM, Alharbi O, Ali Azzam N, Rouabhia M, Alanazi M. Association between TLR-9 polymorphisms and colon cancer susceptibility in Saudi Arabian female patients. OncoTargets Ther. 2016;10:1-11.

  100. Fernandez-Garcia B, Eiro N, Gonzalez-Reyes S, Gonzalez L, Aguirre A, Gonzalez LO, Del Casar JM, Garda-Muniz JL, Vizoso FJ. Clinical significance of Toll-like receptor 3, 4, and 9 in gastric cancer. J Immunother. 2014;37(2):77-83.

  101. Varga MG, Shaffer CL, Sierra JC, Suarez G, Piazuelo MB, Whitaker ME, Romero-Gallo J, Krishna US, Delgado A, Gomez MA, Good JD, Almqvist F, Skaar EP, Correa P, Wilson KT, Hadjifrangiskou M, Peek RM. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene. 2016;35(48):6262-9.

  102. Lagunes-Servin H, Torres J, Maldonado-Bernal C, Perez-Rodriguez M, Huerta-Yepez S, Madrazo de la Garza A, Munoz-Perez L, Flores-Luna L, Ramon-Garcia G, Camorlinga-Ponce M. Toll-like receptors and cytokines are upregulated during Helicobacter pylori infection in children. Helicobacter. 2013;18(6):423-32.

  103. Wang TR, Peng JC, Qiao YQ, Zhu MM, Zhao D, Shen J, Ran ZH. Helicobacter pylori regulates TLR4 and TLR9 during gastric carcinogenesis. Int J Clin Exp Pathol. 2014;7(10):6950-5.

  104. Castano-Rodriguez N, Kaakoush NO, Mitchell HM. Pattern-recognition receptors and gastric cancer. Front Immunol. 2014;5:336.

  105. Chang Y-J, Wu M-S, Lin J-T, Chen C-C. Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol. 2005;175(12):8242-52.

  106. Chang YJ, Wu MS, Lin JT, Sheu BS, Muta T, Inoue H, Chen CC. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori involves TLR2/TLR9 and c-Src-dependent nuclear factor-kappaB activation. Mol Pharmacol. 2004;66(6):1465-77.

  107. Zhang Y, Li Y, Li Y, Li R, Ma Y, Wang H, Wang Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol Med Rep. 2015;11(2):1366-71.

  108. Susi MD, de Lourenjo Caroline M, Rasmussen LT, Payao SLM, Rossi AFT, Silva AE, de Oliveira-Cucolo JG. Toll-like receptor 9 polymorphisms and Helicobacter pylori influence gene expression and risk of gastric carcinogenesis in the Brazilian population. World J Gastrointest Oncol. 2019;11(11):998-1010.

  109. Hold GL, Rabkin CS, Gammon MD, Berry SH, Smith MG, Lissowska J, Risch HA, Chow W, Mowat NG, Vaughan TL, El-Omar EM. CD14-159C/T and TLR9-1237T/C polymorphisms are not associated with gastric cancer risk in Caucasian populations. Eur J Cancer Prev. 2009;18(2):117-9.

  110. Wang X, Xue L, Yang Y, Xu L, Zhang G. TLR9 promoter polymorphism is associated with both an increased susceptibility to gastric carcinoma and poor prognosis. PLoS One. 2013;8(6):E65731.

  111. Sorrentino R, Morello S, Forte G, Montinaro A, De Vita G, Luciano A, Palma G, Arra C, Maiolino P, Adcock IM, Pinto A. B cells contribute to the antitumor activity of CpG-oligodeoxynucleotide in a mouse model of metastatic lung carcinoma. Am J Respir Crit Care Med. 2011;183(10):1369-79.

  112. Sorrentino R, Morello S, Giordano MG, Arra C, Maiolino P, Adcock IM, Pinto A. CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma. Int J Cancer. 2011;128:2815-22.

  113. Lai Y-H, Liu H-Y, Huang C-Y, Chau Y-P, Wu S. Mitochondrial-DNA-associated TLR9 signalling is a potential serological biomarker for non-small-cell lung cancer. Oncol Rep. 2019;41(2):999-1006.

  114. Belmont L, Rabbe N, Antoine M, Cathelin D, Guignabert C, Kurie J, Cadranel J, Wislez M. Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with worse survival in lung cancer. Int J Cancer. 2014;134(4):765-77.

  115. Jang D, Baek YM, Park H, Hwang YE, Kim DE. Dual effects of a CpG-DNAzyme targeting mutant EGFR tran-scripts in lung cancer cells: TLR9 activation and EGFR downregulation. BMB Rep. 2018;51(1):27-32.

  116. Calles A, Aguado G, Sandoval C, Alvarez R. The role of immunotherapy in small cell lung cancer. Clin Transl Oncol. 2019;21(8):961-76.

  117. Kell SA, Kachura MA, Renn A, Traquina P, Coffman RL, Campbell JD. Preclinical development of the TLR9 agonist DV281 as an inhaled aerosolized immunotherapeutic for lung cancer: Pharmacological profile in mice, non-human primates, and human primary cells. Int Immunopharmacol. 2019;66:296-308.

  118. Gallotta M, Assi H, Degagne E, Kannan SK, Coffman RL, Guiducci C. Inhaled TLR9 agonist renders lung tumors permissive to PD-1 blockade by promoting optimal CD4+ and CD8+ t-cell interplay. Cancer Res. 2018;78(17):4943-56.

  119. Xu A, Zhang L, Yuan J, Babikr F, Freywald A, Chibbar R, Moser M, Zhang W, Zhang B, Fu Z, Xiang J. TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasis. Cell Mol Immunol. 2019;16(10):820-32.

  120. Yuan S, Qiao T, Li X, Zhuang X, Chen W, Chen X, Zhang Q. Toll-like receptor 9 activation by CpG oligodeoxynucleotide 7909 enhances the radiosensitivity of A549 lung cancer cells via the p53 signaling pathway. Oncol Lett. 2018;15(4):5271-9.

  121. Sha H-L, Ouyang W-X, Lu G. Expression and clinical significance of TLR9 in ovarian cancer. Zhonghua Zhong Liu Za Zhi. 2010;32(12):913-6 (in Chinese).

  122. Vlad C, Dina C, Kubelac P, Vlad D, Pop B, Achimas Cadariu P. Expression of Toll-like receptors in ovarian cancer. J BUON. 2018;23(6):1725-31.

  123. Berger R, Fiegl H, Goebel G, Obexer P, Ausserlechner M, Doppler W, Hauser-Kronberger C, Reitsamer R, Egle D, Reimer D, Muller-Holzner E, Jones A, Widschwendter M. Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. Cancer Sci. 2010;101(4):1059-66.

  124. Cai Y, Huang J, Xing H, Li B, Li L, Wang X, Peng D, Chen J. Contribution of FPR and TLR9 to hypoxia-induced chemoresistance of ovarian cancer cells. OncoTargets Ther. 2019;12:291-301.

  125. Chuang C-M, Monie A, Wu A, Mao C-P, Hung C-F. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther. 2009;20(4):303-13.

  126. Sommariva M, de Cesare M, Meini A, Cataldo A, Zaffaroni N, Tagliabue E, Balsari A. High efficacy of CpG-ODN, cetuximab and cisplatin combination for very advanced ovarian xenograft tumors. J Transl Med. 2013;11:25.

  127. Sommariva M, De Cecco L, De Cesare M, Sfondrini L, Menard S, Melani C, Delia D, Zaffaroni N, Pratesi G, Uva V, Tagliabue E, Balsari A. TLR9 agonists oppositely modulate DNA repair genes in tumor versus immune cells and enhance chemotherapy effects. Cancer Res. 2011;71(20):6382-90.

  128. Wu H-Q, Wang B, Zhu S-K, Tian Y, Zhang J-H, Wu H-S. Effects of CPG ODN on biological behavior of PANC-1 and expression of TLR9 in pancreatic cancer. World J Gastroenterol. 2011;17(8):996-1003.

  129. Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, Seifert L, Daley D, Greco SH, Deutsch M, Jonnadula S, Torres-Hernandez A, Tippens D, Pushalkar S, Eisenthal A, Saxena D, Ahn J, Hajdu C, Engle DD, Tuveson D, Miller G. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 2015;212(12):2077-94.

  130. Grimmig T, Moench R, Kreckel J, Haack S, Rueckert F, Rehder R, Tripathi S, Ribas C, Chandraker A, Germer CT, Gasser M, Waaga-Gasser A. M. Toll like receptor 2, 4, and 9 signaling promotes autoregulative tumor cell growth and VEGF/PDGF expression in human pancreatic cancer. Int J Mol Sci. 2016;17(12):2060.

  131. Jacobs C, Duewell P, Heckelsmiller K, Wei J, Bauernfeind F, Ellermeier J, Kisser U, Bauer CA, Dauer M, Eigler A, Maraskovsky E, Endres S, Schnurr M. An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer. 2011;128(4):897-907.

  132. Leppanen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari K-M, Lehenkari P, Saarnio J, Karttunen TJ. High Toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch Int J Pathol. 2017;470(4):401-10.

  133. Gonzalez-Reyes S, Fernandez JM, Gonzalez LO, Aguirre A, Suarez A, Gonzalez JM, Escaff S, Vizoso FJ. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother. 2011 Feb;60(2):217-26.

  134. Ilvesaro JM, Merrell MA, Swain TM, Davidson J, Zayzafoon M, Harris KW, Selander KS. Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate. 2007;67(7):774-81.

  135. Vaisanen M-R, Vaisanen T, Jukkola-Vuorinen A, Vuopala KS, Desmond R, Selander KS, Vaarala MH. Expression of Toll-like receptor-9 is increased in poorly differentiated prostate tumors. Prostate. 2010;70(8):817-24.

  136. Di JM, Pang J, Sun QP, Zhang Y, Fang YQ, Liu XP, Zhou JH, Ruan XX, Gao X. Toll-like receptor 9 agonists up-regulate the expression of cyclooxygenase-2 via activation of NF-kappaB in prostate cancer cells. Mol Biol Rep. 2010;37(4):1849-55.

  137. Vaisanen MR, Jukkola-Vuorinen A, Vuopala KS, Selander KS, Vaarala MH. Expression of Toll-like receptor-9 is associated with poor progression-free survival in prostate cancer. Oncol Lett. 2013;5(5):1659-63.

  138. Hossain DMS, Pal SK, Moreira D, Duttagupta P, Zhang Q, Won H, Jones J, D'Apuzzo M, Forman S, Kortylewski M. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin Cancer Res. 2015;21(16):3771-82.

  139. Moreira D, Zhang Q, Hossain DMS, Nechaev S, Li H, Kowolik CM, D'Apuzzo M, Forman S, Jones J, Pal SK, Kortylewski M. TLR9 signaling through NF-KB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget. 2015;6(19):17302-13.

  140. Luo Y, Jiang QW, Wu JY, Qiu JG, Zhang WJ, Mei XL, Shi Z, Di JM. Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer. Oncotarget. 2015;6(26):22564-74.

  141. Deveci Ozkan A, Kaleli S, Onen HI, Sarihan M, Guney Eskiler G, Kalayci Yigin A, Akdogan M. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/ IRF7 signaling pathways in prostate cancer cells. Immunopharmacol Immunotoxicol. 2020;42(2):93-100.

  142. Silva A, Mount A, Krstevska K, Pejoski D, Hardy MP, Owczarek C, Scotney P, Maraskovsky E, Baz Morelli A. The combination of ISCOMATRIX adjuvant and TLR agonists induces regression of established solid tumors in vivo. J Immunol. 2015;194(5):2199-207.

  143. Mandal RK, George GP, Mittal RD. Association of Toll-like receptor (TLR) 2, 3 and 9 gene polymorphism with prostate cancer risk in North Indian population. Mol Biol Rep. 2012;39(7):7263-9.

  144. Eiro N, Ovies C, Fernandez-Garcia B, Alvarez-Cuesta CC, Gonzalez L, Gonzalez LO, Gonzalez LO, Vizoso FJ. Ex-pression of TLR3, 4, 7 and 9 in cutaneous malignant melanoma: Relationship with clinicopathological characteristics and prognosis. Arch Dermatol Res. 2013;305(1):59-67.

  145. Hofmann MA, Kors C, Audring H, Walden P, Sterry W, Trefzer U. Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother. 2008;31(5):520-7.

  146. Sin J-I, Kim H, Ahn E, Jeon YH, Park WS, Lee S-Y, Kwon B. Combined stimulation of TLR9 and 4.1BB augments Trp2 peptide vaccine-mediated melanoma rejection by increasing Ag-specific CTL activity and infiltration into tumor sites. Cancer Lett. 2013;330(2):190-9.

  147. Najar HM, Dutz JP. Topical CpG enhances the response of murine malignant melanoma to dacarbazine. J Invest Dermatol. 2008;128(9):2204-10.

  148. Fan H, Zhang I, Chen X, Zhang L, Wang H, Da Fonseca A, Manuel ER, Diamond DJ, Raubitschek A, Badie B. Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice. Clin Cancer Res. 2012;18(20):5628-38.

  149. Sheyhidin I, Nabi G, Hasim A, Zhang R-P, Ainiwaer J, Ma H, Wang H. Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol. 2011;17(32):3745-51.

  150. Takala H, Kauppila JH, Soini Y, Selander KS, Vuopala KS, Lehenkari PP, Saarnio J, Karttunen TJ. Toll-like receptor 9 is a novel biomarker for esophageal squamous cell dysplasia and squamous cell carcinoma progression. J Innate Immun. 2011;3(6):631-8.

  151. Zhang Y, Wang Q, Ma A, Li Y, Li R, Wang Y. Functional expression of TLR9 in esophageal cancer. Oncol Rep. 2014;31(5):2298-304.

  152. Papadimitraki ED, Tzardi M, Bertsias G, Sotsiou E, Boumpas DT. Glomerular expression of Toll-like receptor-9 in lupus nephritis but not in normal kidneys: Implications for the amplification of the inflammatory response. Lupus. 2009;18(9):831-5.

  153. Ronkainen H, Hirvikoski P, Kauppila S, Vuopala KS, Paavonen TK, Selander KS, Vaarala MH. Absent Toll-like receptor-9 expression predicts poor prognosis in renal cell carcinoma. J Exp Clin Cancer Res. 2011;30:84.

  154. Olbert PJ, Kesch C, Henrici M, Subtil FS, Honacker A, Hegele A, Hofmann R, Hanze J. TLR4- and TLR9-dependent effects on cytokines, cell viability, and invasion in human bladder cancer cells. Urol Oncol. 2015;33(3):110.

CITED BY
  1. Tegtmeyer Nicole, Linz Bodo, Yamaoka Yoshio, Backert Steffen, Unique TLR9 Activation by Helicobacter pylori Depends on the cag T4SS, But Not on VirD2 Relaxases or VirD4 Coupling Proteins, Current Microbiology, 79, 4, 2022. Crossref

Forthcoming Articles

PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan PURPL promotes M2 macrophage polarization in lung cancer via regulating RBM4/xCT signaling Jipeng Guo, Chongwen Gong, Hao Wang SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain