Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Eukaryotic Gene Expression
IF: 1.734 5-Year IF: 1.848 SJR: 0.627 SNIP: 0.516 CiteScore™: 1.96

ISSN Print: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v5.i3-4.20
pages 219-253

Regulation and Regulatory Role of the Retinoids

Kong Wan Ng
Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy 3065, Australia
Hong Zhou
Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy 3065, Australia
Shehnaaz Manji
Department of Medicine, The University of Melbourne, St Vincent's Hospital, Fitzroy 3065, Australia
T. John Martin
St. Vincent's Institute of Medical Research and University of Melbourne Department of Medicine, Fitzroy, 3065, Victoria, Australia

ABSTRACT

Retinoids regulate differentiation and cellular growth, exerting their physiological action by interacting with two families of nuclear receptors, the retinoic acid receptors (RARs), and the retinoid X receptors (RXRs), which regulate gene expression by forming transcriptionally active heterodimeric RAR/RXR or homodimeric RXR/RXR complexes on DNA. Although RAR/RXR heterodimers form preferentially in vitro and in vivo, it does not exclude the possibility that RXR/RXR homodimers may regulate a distinct signaling pathway. Synthetic retinoids that selectively activate or antagonize retinoic acid receptor isoforms promises to be useful tools for the elucidation of specific retinoid response pathways. Considerable progress has been made in understanding the molecular basis underlying limb bud formation, particularly the manner in which retinoic acid interacts with other signaling molecules to determine pattern formation. The phenotypic abnormalities observed in compound null mutants of retinoid receptors, recapitulating those described in the vitamin A deficiency syndrome, confirm the crucial function of endogenous retinoids in fetal development. However, the absence of phenotypic abnormalities in null mutants of individual RAR isoforms raises the possibility of functional redundancy among RAR subtypes and at the same time challenging the concept that the diverse effects of retinoids are related to the multiplicity of functionally distinct receptors.


Articles with similar content:

Retinoid-Regulated Gene Expression in Neural Development
Critical Reviews™ in Eukaryotic Gene Expression, Vol.7, 1997, issue 4
Margaret Clagett-Dame, Lori A. Plum
The Regulation and Regulatory Role of Collagenase in Bone
Critical Reviews™ in Eukaryotic Gene Expression, Vol.6, 1996, issue 1
Prince T. Chan, Terry H. Omura, Nicola C. Partridge, A. Terrece Pearman, Wan-Yin Chou, Sharon R. Bloch, Hobart W. Walling
Deacetylation of Chromatin and Gene Expression Regulation: A New Target for Epigenetic Therapy
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 1-2
Heidi Olzscha, Nicholas B. La Thangue, Semira Sheikh
Post-Translational Regulation of Fas/CD95 in Cell Death and Survival: Role of Nitric Oxide
Forum on Immunopathological Diseases and Therapeutics, Vol.1, 2010, issue 4
Ali Bettaieb, Jean-Francois Jeannin, L. Leon-Bollotte, S. Plenchette-Colas, M. Lamrani
Coactivation and Corepression in Transcriptional Regulation by Steroid/Nuclear Hormone Receptors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.8, 1998, issue 2
J. Don Chen, Hui Li