Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Eukaryotic Gene Expression
IF: 1.841 5-Year IF: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Print: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v5.i3-4.70
pages 365-383

Indirect and Direct Disruption of Transcriptional Regulation in Cancer: E2F and AML-1

Shari Meyers
Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105
Scott W. Hiebert
Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105

ABSTRACT

The disruption of transcriptional regulatory circuits through the elimination of negative regulatory factors (tumor suppressors), the activation of positive acting factors (oncogenes), or when chimeric proteins result from chromosomal translocations, is likely a key event in multistep tumorigenesis. Here, using the transcription factors E2F and AML-1 as model systems, we discuss the disruption of coordinate transcriptional regulation in oncogenesis. E2F oncogenic signals are released when the pRb tumor suppressor is inactivated, and E2F activation may necessitate the coordinate inactivation of a second tumor suppressor, p53. AML-1 is the target of the (8;21) translocation, found in approximately 15% of acute myeloid leukemia (AML) cases, and the t(12;21), found in up to 30% of childhood B-cell acute lymphoblastic leukemias. The t(8;21) creates a fusion protein between AML-1 and a gene of unknown function, mtg8 (ETO), whereas the t(12:21) fuses the TEL (translocation-ets-leukemia) transcription factor to the N-terminus of AML-1. The inv(16), which is the most frequent anomaly found in AML, also targets AML-1, by fusing the gene that encodes AML-l's heterodimeric partner CBFβ to the smooth muscle myosin heavy chain gene MYH11. Thus, E2F and AML-1 provide excellent models for the disruption of transcriptional regulation in cancer.


Articles with similar content:

The Role of Hox Proteins in Leukemogenesis: Insights Into Key Regulatory Events in Hematopoiesis
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 1-2
Elizabeth Eklund
Emerging Roles of CCCH-Type Zinc Finger Proteins in Destabilizing mRNA Encoding Inflammatory Factors and Regulating Immune Responses
Critical Reviews™ in Eukaryotic Gene Expression, Vol.25, 2015, issue 1
Shaofei Huang, Chuanbin Yang, Yong Gu, Xuanbin Wang
CREB and Leukemogenesis
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 1-2
Bryan Mitton, Er-Chieh Cho, Kathleen Sakamoto
AML1-ETO—Mediated Erythroid Inhibition: New Paradigms for Differentiation Blockade by a Leukemic Fusion Protein
Critical Reviews™ in Eukaryotic Gene Expression, Vol.15, 2005, issue 3
Kamaleldin E. Elagib, Adam N. Goldfarb, Youngjin Choi
Neuroendocrine Cells in Prostate Cancer
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 4
Sarah J. Parsons, George P. Amorino