Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.262 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v7.i3.50
pages 317-337


G. Chen
Department of Mechanical Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA
Suresh Aggarwal
Department of Mechanical and Industrial Engineering University of Illinois at Chicago
Thomas A. Jackson
Air Force Aero-Propulsion Laboratory, Fuel and Lubrication Division, WRDC/POSF, Wright Patterson Air Force Base, Ohio, USA
G. L. Switzer
Wright Patterson Air Force Base, Ohio, USA


The dynamics and vaporization of both pure and multicomponent fuel droplets in a laminar-flow field are investigated. Extensive data are obtained on the velocity and size history of a fuel droplet injected into a well-characterized hot laminar flow. Fuels considered are n-hexane, n-decane, and a bicomponent mixture of equal amounts of hexane and decane. The droplet velocity and size histories are measured by phase Doppler particle analyzer, and compared with the predictions from three different liquid-phase models, the infinite-diffusion, diffusion-limit, and thin-skin models. Predicted results generally show good agreement with measured data. For the conditions of this study, it is shown that the use of a solid-sphere, steady-state drag law adequately reproduces the measured velocity history for small to moderate droplet accelerations, provided the variable-property effects are included in the model. However, the quasi-steady drag equation is not able to capture either the large deceleration experienced by the droplet near the injection location, nor the measured inflection point, where the droplet acceleration changes sign, underscoring the importance of unsteady effects on droplet motion. The comparison of vaporization history indicates that, under relatively low-temperature conditions, the predictions of both the infinite-diffusion and the diffusion-limit models are in close agreement with experiments. However, the thin-skin model overpredicts the vaporization rate, and shows significant differences with experiments, especially for less volatile (n-decane) and multicomponent fuel droplets. The comparison also indicates that the thermophysical properties of the gas film surrounding the droplet should be calculated accurately; in particular, the effect of fuel vapor should be considered.