Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i12.50
pages 1147-1169

PLANAR LIQUID SHEET BREAKUP OF PREFILMING AND NONPREFILMING ATOMIZERS AT ELEVATED PRESSURES

Umesh Bhayaraju
Institute of Propulsion Technology, German Aerospace Centre, Linder Höhe, 51147 Cologne
Christoph Hassa
German Aerospace Center−DLR, Institute of Propulsion Technology, Linder Hohe, 51147 Cologne, Germany

ABSTRACT

Liquid sheet breakup of a prefilming and nonprefilming airblast atomizer is investigated experimentally at ambient temperatures and elevated pressures of air. The breakup is studied by high-speed flow visualization. The visualizations show the differences between both types of atomizers. For lower liquid loadings, the atomizer edge is always wetted in the prefilming case, whereas dry zones are observed for the nonprefilming injector. Different atomization regimes are observed for rising Weber numbers on the prefilmer: wavy sheet breakup below We = 100, surface stripping above 380, and a transition zone in between. The nonprefilming case always exhibits wavy sheet breakup, provided there is a sheet at the outlet, with the breakup length reducing to 0.5 mm above We 100. Liquid sheet thickness is characterized with side view images. Films that are thin compared to the edge thickness and are not composed of ligaments at the edge, wrap around the edge and therefore exhibit a storage mechanism. In the far field, drop sizes are characterized with a global Sauter mean diameter measured by phase Doppler anemometry. The measured drop sizes, influenced by primary and secondary atomization, show only small differences between the two types of atomizers. Correlations for the final drop size are obtained for both atomizer types for the conditions investigated.


Articles with similar content:

DEVELOPMENT OF AN AIR-BLAST ATOMIZER FOR INDEPENDENT CONTROL OF DROPLET SIZE AND SPRAY DENSITY
Atomization and Sprays, Vol.14, 2004, issue 3
C. P. Koshland, R. F. Sawyer, H. L. Clack, D. Lucas
MECHANISMS OF AIR-ASSISTED LIQUID ATOMIZATION
Atomization and Sprays, Vol.3, 1993, issue 1
Rolf D. Reitz, A. B. Liu
BREAKUP OF LIQUID DROPLETS IN ACCELERATED GAS FLOWS
Atomization and Sprays, Vol.13, 2003, issue 4
F. Schmelz, Peter Walzel
CHARACTERISTICS OF THE SPRAY PRODUCED BY THE ATOMIZATION OF AN ANNULAR LIQUID SHEET ASSISTED BY AN INNER GAS JET
Atomization and Sprays, Vol.22, 2012, issue 6
Nicolas Leboucher, Francis Roger, Jean-Louis Carreau
PRIMARY BREAKUP OF ROUND AERATED-LIQUID JETS IN SUPERSONIC CROSSFLOWS
Atomization and Sprays, Vol.16, 2006, issue 6
C. Aalburg, Thomas A. Jackson, G. M. Faeth, C. D. Carter, K.-C. Lin, Khaled A. Sallam