Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v18.i7.20
pages 619-644

SIZE AND VELOCITY MEASUREMENTS IN SPRAYS AND PARTICLE-PRODUCING FLAME SPRAYS

Helmi Keskinen
Institute of Physics, Aerosol Physics Laboratory, Tampere University of Technology, FIN-33101 Tampere, Finland
Mikko Aromaa
Institute of Physics, Aerosol Physics Laboratory, Tampere University of Technology, FIN-33101 Tampere, Finland
Martin C. Heine
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, 8092 Zurich, Switzerland
Jyrki M. Makela
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, 8092 Zurich, Switzerland

ABSTRACT

The liquid flame spray technique for nanoparticle production was investigated by in situ droplet and particle diagnostics with and without spray combustion in the presence or absence of zirconia particle precursor. In particular, the effect of atomization gas flow and liquid feed rates on spray characteristics and particle morphology was studied. Droplet size distributions were determined from submicron to supermicron range using phase Doppler anemometry (PDA, droplets >1 μm), scanning mobility particle sizer (droplets <1 μm), and electrical low-pressure impactor (whole droplet size range). The number mean droplet diameters were submicron, while the mass mean diameters were in the supermicron range. During spray combustion, droplet size distributions measured by PDA were affected by fast droplet evaporation and combustion such that an increasing atomization gas flow rate led to decreasing Sauter mean diameters. Average downstream gas velocities estimated by PDA decreased for increasing liquid feed and constant atomization gas flow. Also, particle production, that is, precursor feed to the flame, reduced the gas velocities. Zirconia product composition and morphology were determined by transmission electron microscopy and X-ray diffraction. High atomization gas flow rates resulted in complete precursor evaporation and produced zirconia particles of uniform size and shape.


Articles with similar content:

THE EFFECTS OF GAS LAYER AND LIQUID PHYSICAL PROPERTIES ON THE BREAKUP OF COAXIAL LIQUID JET SPRAY
Atomization and Sprays, Vol.26, 2016, issue 6
Marx Tang, Tony Yuan
SPATIAL DROP BEHAVIOR OF A ROTARY ATOMIZER IN A CROSS FLOW
Atomization and Sprays, Vol.22, 2012, issue 12
Han Jin Jeong, Andrew Corber, Sangsig Yun, Seong Man Choi
INFLUENCE OF ATOMIZATION AND SPRAY PARAMETERS ON THE FLAME SPRAY PROCESS FOR NANOPARTICLE PRODUCTION
Atomization and Sprays, Vol.24, 2014, issue 6
C. D. Rosebrock, Udo Fritsching, L. Madler, Dirceu Noriler, H. F. Meier
PRESSURE—SWIRL ATOMIZATION OFWATER-IN-OIL EMULSIONS
Atomization and Sprays, Vol.20, 2010, issue 12
Christopher D. Bolszo, William A. Sirignano, Adrian A. Narvaez, Vincent G. McDonell, Derek Dunn-Rankin
INEXPENSIVE AIR-ASSIST ATOMIZATION FROM 80,000 ORIFICES
Atomization and Sprays, Vol.16, 2006, issue 7
Steven Collicott, Thomas J. Hoverman