Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2020033923
pages 31-53

CURVATURE-BASED INTERFACE RESOLUTION QUALITY (IRQ) INDICATOR TO ASSESS SIMULATION ACCURACY

R. Canu
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France
Benjamin Duret
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France
Julien Reveillon
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France
Francois-Xavier Demoulin
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France

ABSTRACT

In recent decades direct numerical simulations of liquid-gas flows with interface capturing/tracking method have made great progress. But to address new configurations that contain highly deformed interfaces, a question arises about the validity of the obtained results. Usually, the only solution is to perform a mesh convergence analysis on a well-defined criteria/quantity, which is really costly. For complex simulations such as liquid jet atomization, there is no evidence that a complete resolution of the interface deformation has been achieved, even if these simulations are still very helpful to understand atomization mechanisms. Thus it stresses the need to find an indicator dedicated to the evaluation of the interface resolution quality (IRQ). In this work, a definition for the IRQ indicator is discussed and computed in two configurations: a two-phase homogeneous isotropic turbulence (HIT) and the Spray A configuration (liquid jet injection) from the Engine Combustion Network. The first configuration is used as a reference to ensure the pertinence of the resolution indicator in an academic scenario, where the convergence of the main features of the flows is assured. Regarding the second configuration, the IRQ statistics such as probability density function (PDF) and average values of the IRQ are shown to assess its usefulness in a complex configuration for different Weber and Reynolds numbers.

REFERENCES

  1. Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., and Demoulin, F., Eulerian-Lagrangian Spray Atomization Model Coupled with Interface Capturing Method for Diesel Injectors, Int. J. Multiphase Flow, vol. 113, pp. 325-342,2019.

  2. Bouali, Z., Duret, B., Demoulin, F.X., and Mura, A., DNS Analysis of Small-Scale Turbulence-Scalar Interactions in Evaporating Two-Phase Flows, Int. J. Multiphase Flow, vol. 85, pp. 326-335,2016.

  3. Canu, R., Puggelli, S., Essadki, M., Duret, B., Menard, T., Massot, M., Reveillon, J., and Demoulin, F.X., Where Does the Droplet Size Distribution Come From?, Int. J. Multiphase Flow, vol. 107, pp. 230-245, 2018.

  4. Deshpande, S.S., Anumolu, L., and Trujillo, M.F., Evaluating the Performance of the Two-Phase Flow Solver InterFoam, Comput. Sci. Discov., vol. 5, no. 1, p. 014016,2012.

  5. Desjardins, O., Moureau, V, and Pitsch, H., An Accurate Conservative Level Set/Ghost Fluid Method for Simulating Turbulent Atomization, J. Comput. Physics, vol. 227, no. 18, pp. 8395-8416,2008.

  6. Duret, B., Luret, G., Reveillon, J., Menard, T., Berlemont, A., and Demoulin, F.X., DNS Analysis of Turbulent Mixing in Two-Phase Flows, Int. J. Multiphase Flow, vol. 40, pp. 93-105,2012.

  7. Duret, B., Reveillon, J., Menard, T., and Demoulin, F.X., Improving Primary Atomization Modeling through DNS of Two-Phase Flows, Int. J. Multiphase Flow, vol. 55, pp. 130-137,2013.

  8. Duret, B., Canu, R., Reveillon, J., and Demoulin, F.X., A Pressure based Method for Vaporizing Compressible Two-Phase Flows with Interface Capturing Approach, Int. J. Multiphase Flow, vol. 108, pp. 42-50, 2018.

  9. Engine Combustion Network (ECN), accessed from https://ecn.sandia.gov/.

  10. Gorokhovski, M. and Herrmann, M., Modeling Primary Atomization, Ann. Rev. FluidMech., vol. 40, no. 1, pp. 343-366,2008.

  11. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S., Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows, J. Comput. Phys., vol. 152, no. 2, pp. 423-456,1999.

  12. Herrmann, M., A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids, J. Comput. Phys, vol. 227, no. 4, pp. 2674-2706,2008.

  13. Hinze, J.O., Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes, AIChEJ, vol. 1, no. 3, pp. 289-295,1955.

  14. Kang, M., Fedkiw, R.P., and Liu, X., Boundary Conditions Capturing Method for Multiphase Incompressible Flow, J. Sci. Comput, vol. 3, pp. 323-360,2000.

  15. Kindlmann, G., Whitaker, R., Tasdizen, T., and Moller, T., Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications, 2003 IEEE Visualization Conference, Seattle, WA, pp. 513-520,2003.

  16. Lalanne, B., Villegas, L.R., Tanguy, S., and Risso, F., On the Computation of Viscous Terms for Incom-pressible Two-Phase Flows with Level Set/Ghost Fluid Method, J. Comput. Phys, vol. 301, pp. 289-307, 2015.

  17. Lebas, R., Menard, T., Beau, P.A., Berlemont, A., and Demoulin, F.X., Numerical Simulation of Primary Break-Up and Atomization: DNS and Modelling Study, Int. J. Multiphase Flow, vol. 35, no. 3, pp. 247-260, 2009.

  18. Liu, X.D., Fedkiw, R.P., and Kang, M., A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains, J. Comput. Phys., vol. 160, no. 1,pp. 151-178,2000.

  19. Luret, G., Menard, T., Berlemont, A., Reveillon, J., Demoulin, F.X., andBlokkeel, G., Modeling Collision Outcome in Moderately Dense Sprays, Atomization Sprays, vol. 20, no. 3, pp. 251-268,2010.

  20. Menard, T., Tanguy, S., and Berlemont, A., Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet, Int. J. Multiphase Flow, vol. 33, no. 5, pp. 510-524,2007.

  21. Saurel, R. and Pantano, C., Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows, An-nual Review of Fluid Mechanics, vol. 50, no. 1,pp. 105-130,2018.

  22. Shinjo, J. andUmemura, A., Simulation ofLiquid Jet Primary Breakup: Dynamics ofLigament and Droplet Formation, Int. J. Multiphase Flow, vol. 36, no. 7, pp. 513-532,2010.

  23. Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, J. Comput. Phys, vol. 114, no. 1, pp. 146-159,1994.

  24. Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., and Zhi-Wei, R., A Sharp Interface Method for Incompressible Two-Phase Flows, J. Comput. Phys., vol. 221, no. 2, pp. 469-505,2007.

  25. Thiesset, F., Duret, B., Menard, T., Dumouchel, C., Reveillon, J., and Demoulin, F.X., Liquid Transport in Scale Space, J. Fluid Mech, vol. 886, p. A4,2020.

  26. Vallet, A. and Borghi, R., Modelisation Eulerienne De L'atomisation D'un Jet Liquide, Compt. Rendus l'Academie Sci.-Ser. IIB-Mech.-Phys.-Astron, vol. 327, no. 10, pp. 1015-1020,1999.

  27. Vallet, A., Burluka, A.A., and Borghi, R., Development of a Eulerian Model for the "Atomization" of a Liquid Jet, Atomization Sprays, vol. 11, no. 6, pp. 619-642,2001.

  28. Vaudor, G., Menard, T., Aniszewski, W., Doring, M., and Berlemont, A., A Consistent Mass and Momentum Flux Computation Method for Two Phase Flows. Application to Atomization Process, Comput. Fluids, vol. 152, pp. 204-216,2017.

  29. Wardle, K.E. and Weller, H.G., Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction, Int. J. Chem. Eng., vol. 2013, pp. 1-13,2013.

  30. Weller, H.G., Tabor, G., Jasak, H., and Fureby, C., A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques, Comput. Phys., vol. 12, no. 6, pp. 620-631,1998.


Articles with similar content:

ATOMIZATION MODELING USING SURFACE DENSITY AND STOCHASTIC FIELDS
Atomization and Sprays, Vol.30, 2020, issue 4
Aqeel Ahmed, Salvador Navarro-Martinez, K. Vogiatzaki, Francois-Xavier Demoulin, B. Duret, G. Tretola, Julien Reveillon
AN EXPERIMENTAL STUDY OF LIQUID SPRAYS INDUCED BY A FULL CONE NOZZLE
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Jean-Marie Buchlin, D. Moreau
TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING
Atomization and Sprays, Vol.23, 2013, issue 11
Zakaria Bouali, Francois-Xavier Demoulin, P. Desjonqueres, Bernard Duret, Thibaut Menard, Julien Reveillon
LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION
Atomization and Sprays, Vol.21, 2011, issue 9
Francois-Xavier Demoulin, Thibaut Menard, J. Chesnel, Julien Reveillon
Subgrid-scale interface model for atomizing high-speed liquid jets
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Helfried Steiner, D. Heidorn