Library Subscription: Guest

NUMERICAL STUDY OF NANOFLUID HEAT TRANSFER ENHANCEMENT WITH MIXING THERMAL CONDUCTIVITY MODELS

Volume 6, Issue 1, 2014, pp. 1-12
DOI: 10.1615/ComputThermalScien.2013006287
Get accessGet access

ABSTRACT

Nanofluids have shown the possibility of enhancing heat transfer performance above its base fluids. This work presents a numerical study that analyzes the nanofluid heat transfer enhancement using different theoretical models; i.e., the effective thermal conductivity and effective viscosity models. The Maxwell, Brownian motion, and Yu and Choi models were considered as the effective thermal conductivity models and these models were used and mixed alternately in the simulation domain, referred to as mixing models. The Al2O3−water nanofluid was chosen in this study and assumed to flow under a laminar, fully developed flow condition through a rectangular pipe such as in a circuit application. The governing equations, written in terms of the primitive variables, were solved through an in-house program using the finite-volume method and the semi-implicit method for pressure linked equations (SIMPLE) algorithm. From the study, the mixing models using Yu and Choi model coupled with Maxwell and Brownian models at the wall boundaries combined with the viscosity model from Maiga provided the numerical results closer to the experimental results from Zeinali Heris and co-workers at volume fractions of 0.01, 0.02, and 0.03%, as well as those of the base fluid. Therefore, by increasing the nanoparticle amounts, volume fraction, effective viscosity, and effective thermal conductivity at the wall region could be increased and enhancements of 0.01, 0.02, and 0.03% volume fractions were 21, 29, and 36% increasing from the base fluid, respectively. This work can strongly support the literature in which the volume fraction, effective viscosity, and effective thermal conductivity can enhance the heat transfer performance in nanofluid flows not only with the single-phase model considered but also with the mixing models examined.

CITED BY
  1. Kakaç Sadık, Pramuanjaroenkij Anchasa, Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – A state-of-the-art review, International Journal of Thermal Sciences, 100, 2016. Crossref

  2. Sert İsmail Ozan, Sezer-Uzol Nilay, Numerical analysis of convective heat transfer of nanofluids in circular ducts with two-phase mixture model approach, Heat and Mass Transfer, 52, 9, 2016. Crossref

  3. Bhargava R., Sharma S., Bhargava P., Bég O. Anwar, Kadir A., Finite Element Simulation of Nonlinear Convective Heat and Mass Transfer in a Micropolar Fluid-Filled Enclosure with Rayleigh Number Effects, International Journal of Applied and Computational Mathematics, 3, 2, 2017. Crossref

  4. Kakaç Sadık, Pramuanjaroenkij Anchasa, Convective Heat Transfer Enhancement with Nanofluids: A State-of-the-Art Review, in Microscale and Nanoscale Heat Transfer, 2016. Crossref

  5. Bég O. A., Motsa S. S., Kadir A., Bég T. A., Islam M. N., Spectral quasilinear numerical simulation of micropolar convective wall plumes in high permeability porous media, Journal of Engineering Thermophysics, 25, 4, 2016. Crossref

  6. Pramuanjaroenkij A., Tongkratoke A., Kakaç S., Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement, Journal of Engineering Physics and Thermophysics, 91, 1, 2018. Crossref

  7. Pramuanjaroenkij Anchasa, Kakac Sadik, The Capability Study of Practical Working Fluids in the Desktop-CPU Cooling System , Proceeding of Proceedings of CONV-22: Int. Symp. on Convective Heat and Mass Transfer June 5 – 10, 2022, Turkey, 2022. Crossref

Forthcoming Articles

A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain