Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2018026988
pages 325-343

A MULTISCALE/MULTIDOMAIN MODEL FOR THE FAILURE ANALYSIS OF MASONRY WALLS: A VALIDATION WITH A COMBINED FEM/DEM APPROACH

Emanuele Reccia
University of Cagliari
L. Leonetti
DINCI, University of Calabria, Cosenza, Italy
Patrizia Trovalusci
Department of Structural Engineering and Geotechnics Sapienza University of Rome Via Gramsci 53, 00197 Rome, Italy
Antonella Cecchi
Department of Architecture Construction Conservation (DACC), University IUAV of Venice, Dorsoduro 2206, Venice, 30123, Venice, Italy

ABSTRACT

An accurate and fast failure simulation for masonry walls is still an active field of research, due to its fundamental role in predicting the overall response of masonry structures under seismic and other extreme natural and manoriginated events. Multiscale models have been successfully exploited for achieving this task, being characterized by high computational efficiency, especially in the presence of strong nonlinearities due to multiple microcrack initiation and propagation. In this paper, a novel multiscale/multidomain approach for nonlinear analysis of masonries is presented, based on a couple-stress homogenization for undamaged regions and an adaptive strategy for triggering the macro-to-micro switching operations. An extended validation of the proposed approach is presented, via suitable comparisons with a micromechanical model, here regarded as a benchmark model, that finely describes the microstructure, based on the combined finite/discrete element method (FEM/DEM). A critical discussion of the obtained numerical results has shown the efficacy of the proposed models as well as their limits of application.


Articles with similar content:

MULTIFIELD CONTINUUM SIMULATIONS FOR DAMAGED MATERIALS: A BAR WITH VOIDS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Valerio Varano, Patrizia Trovalusci
CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang
Symmetric Mesomechanical Model for Failure Analysis of Heterogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Caglar Oskay, Robert Crouch
NONLINEAR BEHAVIOR OF MASONRY WALLS: FE, DE, AND FE/DE MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Daniele Baraldi, Emilio Meroi, Antonella Cecchi, Emanuele Reccia, Claudia Brito de Carvalho Bello
Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman