Library Subscription: Guest
International Journal for Multiscale Computational Engineering

Published 6 issues per year

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Dynamic Crack Propagation Using a Combined Molecular Dynamics/Extended Finite Element Approach

Volume 8, Issue 2, 2010, pp. 221-235
DOI: 10.1615/IntJMultCompEng.v8.i2.70
Get accessGet access

ABSTRACT

A method is presented for simulating dynamic crack propagation using a coupled molecular dynamics/extended finite element method. Molecular dynamics is used at the crack tip while the extended finite element method naturally models the crack in the wake of the tip as a traction-free discontinuity. After recalling the basic molecular dynamics equations, the discretization of the continuum and the traction-free discontinuity via the extended finite element method, and the zonal coupling method between both domains, two-dimensional computations of dynamic fracture are presented, including a discussion on how to move and/or expand the zone in which molecular dynamics is used upon crack propagation.

REFERENCES
  1. Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., Diaz De La Rubia, T., and Seager, M., Simulating materials failure by using up to one billion atoms and the world's fastest computer: work-hardening. DOI: 10.1073/pnas.062054999

  2. Agrawal, P., Rice, B., and Thompson, D., Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. DOI: 10.1016/S0039-6028(02)01916-7

  3. Aubertin, P., Coupling of atomistic and continuum models: Dynamic crack propagation.

  4. Aubertin, P., Rethore, J., and de Borst, R., Energy conservation of atomistic/continuum coupling. DOI: 10.1002/nme.2542

  5. Basinski, Z. S., Duesberry, M. S., and Taylor, R., Influence of shear stress on screw dislocations in a model sodium lattice.

  6. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  7. Car, R. and Parrinello, M., Unified approach for molecular dynamics and density-functional theory. DOI: 10.1103/PhysRevLett.55.2471

  8. Cheung, K. S. and Yip, S., Atomic-level stress in an inhomogeneous system. DOI: 10.1063/1.350186

  9. Coker, D., Rosakis, A. J., and Needleman, A., Dynamic crack growth along a polymer composite-homalite interface. DOI: 10.1016/S0022-5096(02)00082-0

  10. de Borst, R., Numerical aspects of cohesive zone models. DOI: 10.1016/S0013-7944(03)00122-X

  11. Fries, T. P., A corrected XFEM approximation without problems in blending elements. DOI: 10.1002/nme.2259

  12. Gracie, R. and Belytschko, T., Concurrently coupled atomistic and XFEM models for dislocations and cracks. DOI: 10.1002/nme.2488

  13. Kolhoff, S., Gumbsch, P., and Frischmeister, H. F.,, Crack propagation in bcc crystals studied with a combined finite element and atomistic model. DOI: 10.1080/01418619108213953

  14. Lutsko, J. F., Stress and elastic constants in anisotropic solids: molecular dynamics techniques. DOI: 10.1063/1.341877

  15. Menouillard, T., Rethore, J., and Combescure, A., Efficient explicit time stepping for the extended finite element method. DOI: 10.1002/nme.1718

  16. Miller, R., Ortiz, M., Phillips, R., Shenoy, V., and Tadmor, E. B., Quasicontinuum models of fracture and plasticity. DOI: 10.1016/S0013-7944(98)00047-2

  17. Moes, N., Dolbow, J., and Belytschko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

  18. Nose, S., Constant-temperature molecular dynamics. DOI: 10.1088/0953-8984/2/S/013

  19. Parr, R. G., Gadre, S. R., and Bartolotti, L. J., Local density functional theory of atoms and molecules. DOI: 10.1073/pnas.76.6.2522

  20. Remmers, J. J. C., de Borst, R., and Needleman, A., A cohesive segments method for the simulation of crack growth. DOI: 10.1007/s00466-002-0394-z

  21. Remmers, J. J. C., de Borst, R., and Needleman, A., The simulation of dynamic crack propagation using the cohesive segments method. DOI: 10.1016/j.jmps.2007.08.003

  22. Rethore, J., Gravouil, A., and Combescure, A., An energy conserving scheme for dynamic crack growth with the extended finite element method. DOI: 10.1002/nme.1283

  23. Rethore, J., de Borst, R., and Abellan, M. A., A two-scale approach for fluid flow in fractured porous media. DOI: 10.1002/nme.1962

  24. Rethore, J., de Borst, R., and Abellan, M. A., A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. DOI: 10.1007/s00466-007-0178-6

  25. Shilkrot, L. E., Miller, R. E., and Curtin, W. A., Coupled atomistic and discrete dislocation plasticity. DOI: 10.1103/PhysRevLett.89.025501

  26. Wells, G. N. and Sluys, L. J., Discontinuous analysis of softening solids under impact loading. DOI: 10.1002/nag.148

  27. Wells, G. N., de Borst, R., and Sluys, L. J., A consistent geometrically non-linear approach for delamination. DOI: 10.1002/nme.462

  28. Xu, X. P. and Needleman, A., Numerical simulations of fast crack growth in brittle solids. DOI: 10.1016/0022-5096(94)90003-5

  29. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

  30. Zhou, S. J., Lomdahl, P. S., Voter, A. F., and Holian, B. L., Three-dimensional fracture via large-scale molecular dynamics. DOI: 10.1016/S0013-7944(98)00053-8

CITED BY
  1. Najafi A., Marin E.B., Rais-Rohani M., Concurrent multi-scale crush simulations with a crystal plasticity model, Thin-Walled Structures, 53, 2012. Crossref

  2. Natarajan Sundararajan, Song Chongmin, Representation of singular fields without asymptotic enrichment in the extended finite element method, International Journal for Numerical Methods in Engineering, 96, 13, 2013. Crossref

  3. Qian Dong, Chirputkar Shardool, Bridging scale simulation of lattice fracture using enriched space-time Finite Element Method, International Journal for Numerical Methods in Engineering, 97, 11, 2014. Crossref

  4. Ladubec Chris, Gracie Robert, Craig James, An extended finite element method model for carbon sequestration , International Journal for Numerical Methods in Engineering, 102, 3-4, 2015. Crossref

  5. de Borst René, Fracture and damage in quasi-brittle materials: A comparison of approaches, Theoretical and Applied Fracture Mechanics, 122, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain