IF:
1.016
5-Year IF:
1.194
SJR:
0.554
SNIP:
0.68
CiteScore™:
1.18
ISSN Print: 1543-1649
ISSN Online: 1940-4352
Volumes:
Volume 17, 2019
Volume 16, 2018
Volume 15, 2017
Volume 14, 2016
Volume 13, 2015
Volume 12, 2014
Volume 11, 2013
Volume 10, 2012
Volume 9, 2011
Volume 8, 2010
Volume 7, 2009
Volume 6, 2008
Volume 5, 2007
Volume 4, 2006
Volume 3, 2005
Volume 2, 2004
Volume 1, 2003
|
International Journal for Multiscale Computational Engineering
DOI: 10.1615/IntJMultCompEng.2011002761
pages 599-608
MULTIFIELD CONTINUUM SIMULATIONS FOR DAMAGED MATERIALS: A BAR WITH VOIDS
Patrizia Trovalusci
Department of Structural Engineering and Geotechnics
Sapienza University of Rome
Via Gramsci 53, 00197 Rome, Italy
Valerio Varano
Department of Structures, Roma Tre University of Rome, 00146 Roma, Italy
ABSTRACT
This work is based on the formulation of a continuum model with microstructure for the study of the mechanical behavior of microcracked materials. Such a continuum is named multifield continuum because it is characterized by field descriptors accounting for the presence of material internal structure. In particular, the disturbance due to the presence of distributed microcracks in the material is revealed by an additional kinematical field representing the smeared displacement jump over the microcracks. According to the approach of the classical molecular theory of elasticity, the constitutive multifield continuum (macromodel) has been obtained by requiring the energy equivalence with an appropriate discrete micromodel. The stress-strain relations of the continuum have been explicitly identified by selecting the response functions of the interactions of the discrete model and depend on the geometry of the material's internal phases. Attention is here focused on theoretical and numerical investigations on a one-dimensional microcracked bar by varying the microcrack density and size. The effectiveness of the multi-field model, in representing the gross mechanical behavior of such materials with internal structure, is ascertained by comparing the multifield solutions with the numerical solutions obtained by using finite-element simulations for a linear elastic strip having different distributions of voids.
REFERENCES
-
Benvenuti, E., Borino, G., and Tralli, A.,
A thermodynamically consistent nonlocal formulations for damaging materials.
DOI: 10.1016/S0997-7538(02)01220-2
-
Capecchi, D., Ruta, G., and Trovalusci, P.,
From classical to Voigt’s molecular models in elasticity.
DOI: 10.1007/s00407-010-0065-y
-
Capriz, G.,
Continua with Microstructure.
-
Capriz, G. and Podio-Guidugli, P.,
Whence the boundary conditions in modern continuumphysics?.
-
Cauchy, A.-L.,
Sur l’ èquilibre et le mouvement d’un système de points matèriels sollicitès par des forces d’attraction ou de rèpulsion mutuelle.
-
Cauchy, A.-L.,
Sur l’èquilibre et le mouvement d’un système de points matèriels sollicitès par des forces d’attraction ou de rèpulsion mutuelle.
-
Di Carlo, A.,
Non-standard format for continuum mechanics.
-
Erigen, A. C.,
Microcontinuum Field Theories.
-
Forest, S.,
The micromorphic approach for gradient elasticity, viscoplasticity and damage.
DOI: 10.1061/(ASCE)0733-9399(2009)135:3(117)
-
Forest, S. and Trinh, D. K.,
Generalised continua and the mechanics of heterogeneous materials.
-
Germain, P.,
The method of virtual power in continuum mechanics. Part II: Microstructure.
DOI: 10.1137/0125053
-
Goddard, J. D.,
A general micromorphic theory of kinematics and stress in granular media.
-
Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M.,
Multi-scale second order computational homogenization of multi-phase materials: A nested finite element solution strategy.
DOI: 10.1016/j.cma.2003.12.073
-
Kunin, I. A.,
Elastic Media with Microstructure. I: One-dimensional Models.
-
Mariano, P. M. and Trovalusci, P.,
Constitutive relations for elastic microcracked bodies: From a lattice model to a multifield continuum description.
DOI: 10.1177/105678959900800204
-
Ortiz, M. and Phillips, R.,
Nanomechanics of defects in solids.
-
Palla, P., Ippolito, M., Giordano, S., Mattoni, A., and Colombo, L.,
Atomistic approach to nanomechanics: Concepts, methods, and (some) applications.
-
Peerlings, R. H. J. and Fleck, N. A.,
Computational evaluation of strain gradient elasticity constants.
-
Pijaudier-Cabot, G. and Bazant, Z. P.,
Nonlocal damage theory.
DOI: 10.1061/(ASCE)0733-9399
-
Sansalone, V., Trovalusci, P., and Cleri, F.,
Multiscale modelling of materials by a multifield approach: Microscopic stress and strain distribution in fiber-matrix composites.
DOI: 10.1016/j.actamat.2006.03.041
-
Sluys, L. J., de Borst, R., and Mühlhaus, H.-B.,
Wave propagation, localization and dispersion in a gradient-dependent medium.
DOI: 10.1016/0020-7683(93)90010-5
-
Trovalusci, P. and Augusti, G.,
A continuum model with microstructure for materials with flaws and inclusions.
DOI: 10.1051/jp4:1998847
-
Trovalusci, P. and Masiani, R.,
A multi-field model for blocky materials based on multiscale description.
DOI: 10.1016/j.ijsolstr.2005.03.027
-
Trovalusci, P., Capecchi, D., and Ruta, G.,
Genesis of multiscale approach for materials with microstructure.
DOI: 10.1007/s00419-008-0269-7
-
Trovalusci, P., Varano, V., and Rega, G.,
A generalized continuum formulation for composite microcracked materials and wave propagation in a bar.
DOI: 10.1115/1.4001639
-
Voigt, W.,
Lehrbuch der Kristallphysik.
Articles with similar content:
BUCKLING OF FGM TIMOSHENKO MICROBEAMS UNDER IN-PLANE THERMAL LOADING BASED ON THE MODIFIED STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
M. Faghih Shojaei, S. Sahmani, R. Ansari, V. Mohammadi, R. Gholami
NON-LOCAL COMPUTATIONAL HOMOGENIZATION OF PERIODIC MASONRY
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Andrea Bacigalupo , Luigi Gambarotta
MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
STOCHASTIC ANALYSIS OF ONE-DIMENSIONAL HETEROGENEOUS SOLIDS WITH LONG-RANGE INTERACTIONS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Massimiliano Zingales, Mario Di Paola, Alba Sofi
Nanostructured Interphases and Multiscale Effects in the Forming of Composite Micro-Rods
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
V. M. Harik
|