Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012003776
pages 635-648

DEFINITION OF THE STIFFNESS MATRIX OF A HIERARCHICAL STRUCTURE BY USING VIRTUAL TESTING AND ARTIFICIAL NEURAL NETWORKS

Daniela Boso
Department of Structural and Transportation Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
M. Lefik
Geotechnical Engineering and Engineering Structures, Technical University of Lodz, Poland

ABSTRACT

In this paper, we consider structures characterized by a definite geometrical hierarchy, such as multilayer wire ropes. We investigate the mechanical behavior, namely, the influence of the hierarchical helix geometry on the stiffness of the cable. It is shown how the stiffness matrix of these structures is different from the usual stiffness matrix of Euler-Bernoulli beams. Furthermore, the dependence of the stiffness coefficients on the twist pitches of the multilevel helixes is also analyzed. A hybrid finite element{artificial neural network approach (ANN-FE) is proposed, suggesting that suitably trained ANNs can replace the module that usually provides the stiffness matrix in an FE code. Finally, a comparison is shown, where results obtained via the FE method are compared with those calculated by an ANN-FE procedure.

REFERENCES

  1. Bellina, F., Boso, D., Schrefler, B. A., and Zavarise, G., Modeling a multistrand SC cable with an electrical DC lumped network. DOI: 10.1109/TASC.2002.1018666

  2. Boso, D., Pellegrino, C., Galvanetto, U., and Schrefler, B. A., Macroscopic damage in periodic composite materials. DOI: 10.1002/1099-0887(200009)16:9<615::AID-CNM355>3.0.CO;2-2

  3. Boso, D. P., Lefik, M., and Schrefler, B. A., Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils. DOI: 10.1016/j.cryogenics.2005.06.002

  4. Boso, D. P., Lefik, M., and Schrefler, B. A., Thermal and bending strain on Nb3Sn strands.

  5. Boso, D. P. and Lefik, M., Numerical Phenomenology: Virtual testing of the hierarchical structure of a bundle of strands.

  6. Gawin, D., Lefik, M., and Schrefler, B. A., ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis. DOI: 10.1002/1097-0207(20010120)50:2<299::AID-NME20>3.0.CO;2-Y

  7. Hain, M. and Wriggers, P., Numerical homogenization of hardened cement paste. DOI: 10.1007/s00466-007-0211-9

  8. Hertz, J., Krogh, A., and Palmer, G. R., Introduction to the Theory of Neural Computation.

  9. Hu, Y. H. and Hwang, J.-N., Handbook of Neural Network Signal Processing. DOI: 10.1121/1.1480419

  10. Lefik, M. and Schrefler, B. A., Artificial neural network for parameter identifcations for an elasto-plastic model of superconducting cable under cyclic loading. DOI: 10.1016/S0045-7949(02)00162-1

  11. Lefik, M. and Schrefler, B. A., Artificial neural network as an incremental non-linear constitutive model for a finite element code. DOI: 10.1016/S0045-7825(03)00350-5

  12. Lefk, M., Boso, D. P., and Schrefler, B. A., Artificial neural networks in numerical modelling of composites. DOI: 10.1016/j.cma.2008.12.036

  13. Liu, D. S. and Tsai, C. Y., Estimation of thermo-elasto-plastic properties of thin-film mechanical properties using MD nanoindentation simulations and an inverse FEM/ANN computational scheme.

  14. Miehe, C., Schroder, J., and Schotte, J., Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. DOI: 10.1016/S0045-7825(98)00218-7

  15. Nemov, A. S., Boso, D. P., Voynov, I. B., Borovkov, A. I., and Schrefler, B. A., Generalized stiffness coefficients for ITER superconducting cables, direct FE modeling and initial configuration. DOI: 10.1016/j.cryogenics.2009.11.006

  16. Pellegrino, C., Galvanetto, U., and Schrefler, B. A., Numerical homogenisation of periodic composite materials with non-linear material components. DOI: 10.1002/(SICI)1097-0207(19991210)46:10<1609::AID-NME716>3.0.CO;2-Q

  17. Weiss, K. P., Cryogenic laboratory tests for V-I characterisation of subcable samples.

  18. Zanino, R., Boso, D. P., Lefik, M., Ribani P. L., Richard, L. S., and Schrefler, B. A., Analysis of bending effects on performance degradation of ITER-relevant Nb3Sn strand using the THELMA code. DOI: 10.1109/TASC.2008.921336


Articles with similar content:

UNCERTAINTY QUANTIFICATION IN DAMAGE MODELING OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Caglar Oskay, Sankaran Mahadevan, Michael J. Bogdanor
ANALYSIS OF ELASTICITY OF A LAMINATED COMPOSITE WITH ANISOTROPIC HETEROMODULAR LAYERS
TsAGI Science Journal, Vol.49, 2018, issue 8
Aleksander Ivanovich Oleinikov
Adaptive Model Selection Procedure for Concurrent Multiscale Problems
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 5
Mark S. Shephard, Mohan A. Nuggehally, Catalin Picu, Jacob Fish
PREDICTION OF THE MECHANICAL PROPERTIES OF COPPER POWDER-FILLED LOW-DENSITY POLYETHYLENE COMPOSITES. A COMPARISON BETWEEN THE ANN AND THEORETICAL MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 1
P. K. Sharma, A. S. Luyt, Ramvir Singh, R. S. Bhoopal
AN ATOMISTIC–CONTINUUM MULTISCALE METHOD FOR MODELING THE THERMOMECHANICAL BEHAVIOR OF HETEROGENEOUS NANOSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
M. Jahanshahi, N. Jafarian, N. Heidarzadeh, Amir R. Khoei