Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012004076
pages 599-613

MICROMORPHIC CONTINUA: APPLICATION TO THE HOMOGENIZATION OF DIATOMIC MASONRY COLUMNS

Ioannis Stefanou
Ecole des Ponts ParisTech, UR Navier/MSA, 68 av. B. Pascal, F 77455 Marne la Vallee cdx 2, France
J. Sulem
Ecole des Ponts ParisTech, UR Navier/CERMES, 68 av. B. Pascal, F 77455 Marne la Vallee cdx 2, France

ABSTRACT

In the frame of continuum mechanics, the theory of general micromorphic continua is a key element for modeling mechanical systems of discrete building blocks such as masonry structures. This stems from the fact that the kinematics of the particle, in the terminology of Germain (Germain, P., The Method of Virtual Power in Continuum Mechanics, Part 2: Microstructure. SIAM J. Appl. Math., vol. 25, pp. 556-575, 1973), is quite rich to cover the various degrees of freedom of the discrete microstructure. In the present paper, we derive a third-order micromorphic continuum for modeling diatomic masonry columns. Our analysis is extended to the dynamic regime. For linear elastic interfaces, the derived continuum is compared with the discrete model in terms of the dispersion curves. It is shown that the continuum approximates well the discrete structure for wavelengths five to ten times bigger than the size of the elementary cell. Therefore, the presented model may be the base for future engineering applications in the field of cultural heritage assets, because it might be an alternative approach in the mechanical modeling of ancient colonnades, whose study is mostly performed with the discrete element method. As it is well known, continuum models are quite flexible, computationally cheaper, and may give insight to the fundamental properties of the systems at hand.

REFERENCES

  1. Aboudi, J., Mechanics of Composite Materials.

  2. Bakhvalov, N. and Panasenko, G., Homogenisation: Averaging Process in Periodic Media.

  3. Bazant, Z. P. and Christensen, M., Analogy between micropolar continuum and grid frameworks under initial stress. DOI: 10.1016/0020-7683(72)90093-5

  4. Besdo, D., Inelastic behaviour of plane frictionless block-systems described as cosserat media.

  5. Eringen, A. C., Microcontinuum Field Theories I: Foundations and Solids.

  6. Germain, P., The method of virtual power in continuum mechanics, Part 2: Microstructure. DOI: 10.1137/0125053

  7. Kittel, C., Introduction to Solid States Physics.

  8. Komodromos, P., Papaloizou, L., and Polycarpou, P., Simulation of the response of ancient columns under harmonic and earthquake excitations. DOI: 10.1016/j.engstruct.2007.11.004

  9. Kumar, R. S. and McDowell, D. L., Generalized continuum modelling of 2-D periodic cellular solids. DOI: 10.1016/j.ijsolstr.2004.06.038

  10. Mindlin, R. D., Microstructure in linear elasticity. DOI: 10.1007/BF00248490

  11. Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity. DOI: 10.1016/0020-7683(65)90006-5

  12. Muhlhaus, H.-B., Sulem, J., and Unterreiner, P., Discrete and continuous models for dry masonry columns. DOI: 10.1061/(ASCE)0733-9399(1997)123:4(399)

  13. Papamichos, E., Vardoulakis, I., and Muhlhaus, H.-B., Buckling of layered elastic media: A Cosserat-continuum approach and its validation. DOI: 10.1002/nag.1610140703

  14. Pasternak, E. and Muhlhaus, H.-B., Generalized homogenization procedures for granular material. DOI: 10.1007/s10665-004-3950-z

  15. Sanchez-Palencia, E. and Zaoui, A., Homogenization Techniques for Composite Media. DOI: 10.1007/3-540-17616-0

  16. Stefanou, I., Sulem, J., and Vardoulakis, I., Homogenization of interlocking masonry structures using a generalized differential expansion technique. DOI: 10.1016/j.ijsolstr.2010.02.011

  17. Stefanou, I., Psycharis, I., and Georgopoulos, I.-O., Dynamic response of reinforced masonry columns in classical monuments. DOI: 10.1016/j.conbuildmat.2010.12.042

  18. Stefanou, I., Vardoulakis, I., and Mavraganis, A., Dynamic motion of a conical frustum over a rough horizontal plane. DOI: 10.1016/j.ijnonlinmec.2010.07.008

  19. Sulem, J. and M&uuml;hlhaus, H.-B., A continuum model for periodic two-dimensional block structures. DOI: 10.1002/(SICI)1099-1484(199701)2:1<31::AID-CFM24>3.0.CO;2-O

  20. Trovalusci, P., Capecchi, D., and Ruta, G., Genesis of the multiscale approach for materials with microstructure. DOI: 10.1007/s00419-008-0269-7

  21. Trovalusci, P. and Massiani, R., Non-linear micropolar and classical continua for anisotropic discontinuous materials. DOI: 10.1016/S0020-7683(02)00584-X


Articles with similar content:

VARIATIONAL INEQUALITIES FOR HETEROGENEOUS MICROSTRUCTURES BASED ON COUPLE-STRESS THEORY
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 2
Sonjoy Das, Gary F. Dargush, Ali R. Hadjesfandiari, Sourish Chakravarty
Comparisons of the Size of the Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
X. Du, Martin Ostoja-Starzewski, Z. F. Khisaeva, W. Li
BUCKLING FLOWS: A NEW FRONTIER IN FLUID MECHANICS
Annual Review of Heat Transfer, Vol.1, 1987, issue 1
Adrian Bejan
Modeling of interaction of single droplet with turbulent flow
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
M. Marek, Artur Tyliszczak
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung