Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012003105
pages 527-549

EVALUATION OF GENERALIZED CONTINUUM SUBSTITUTION MODELS FOR HETEROGENEOUS MATERIALS

Duy Khanh Trinh
MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, F−91003 Evry Cedex, France
Ralf Janicke
Ruhr-Universitat Bochum, Institut fur Mechanik-Kontinuumsmechanik, IA 3/28, Universitatsstr. 150, D−44780 Bochum, Germany
Nicolas Auffray
Laboratoire Modelisation et Simulation Multi-echelles (MSME), UMR 8208 CNRS, Universite Paris-Est Marne-la-Vallee, 5 Bd Descartes, D−77454 Marne-la-Vallee, France
Stefan Diebels
Universitat des Saarlandes, Lehrstuhl fuer Technische Mechanik, Postfach 1511 50, D−66041 Saarbrucken, Germany
Samuel Forest

ABSTRACT

Several extensions of standard homogenization methods for composite materials have been proposed in the literature that rely on the use of polynomial boundary conditions enhancing the classical affine conditions on the unit cell. Depending on the choice of the polynomial, overall Cosserat, second gradient, or micromorphic homogeneous substitution media are obtained. They can be used to compute the response of the composite when the characteristic length associated with the variation of the applied loading conditions becomes of the order of the size of the material inhomogeneities. A significant difference between the available methods is the nature of the fluctuation field added to the polynomial expansion of the displacement field in the unit cell, which results in different definitions of the overall stress and strain measures and higher order elastic moduli. The overall higher order elastic moduli obtained from some of these methods are compared in the present contribution in the case of a specific periodic two-phase composite material. The performance of the obtained overall substitution media is evaluated for a chosen boundary value problem at the macroscopic scale for which a reference finite element solution is available. Several unsatisfactory features of the available theories are pointed out, even though some model predictions turn out to be highly relevant. Improvement of the prediction can be obtained by a precise estimation of the fluctuation at the boundary of the unit cell.

REFERENCES

  1. Auffray, N., Bouchet, R., and Brechet, Y., Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. DOI: 10.1016/j.ijsolstr.2008.09.009

  2. Auffray, N., Bouchet, R., and Brechet, Y., Strain gradient elastic homogenization of bidimensional cellular media. DOI: 10.1016/j.ijsolstr.2010.03.011

  3. Bacigalupo, A. and Gambarotta, L., Second-order computational homogenization of heterogeneous materials with periodic microstructure. DOI: 10.1002/zamm.201000031

  4. Bigoni, D. and Drugan, W. J., Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. DOI: 10.1115/1.2711225

  5. Boutin, C., Microstructural effects in elastic composites. DOI: 10.1016/0020-7683(95)00089-5

  6. Bouyge, F., Jasiuk, I., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic two-phase composite. DOI: 10.1016/S0020-7683(00)00132-3

  7. De Bellis, M. L. and Addessi, D., A Cosserat based multi-scale model for masonry structures. DOI: 10.1615/IntJMultCompEng.2011002758

  8. Dell'Isola, F., Rosa, L., and Wozniak, C., A micro-structured continuum modelling compacting fluid-saturated grounds: The effects of pore-size scale parameter. DOI: 10.1007/BF01170371

  9. Dillard, T., Forest, S., and Ienny, P., Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. DOI: 10.1016/j.euromechsol.2005.11.006

  10. Ebinger, T., Steeb, H., and Diebels, S., Modeling macroscopic extended continua with the aid of numerical homogenization schemes. DOI: 10.1016/j.commatsci.2004.09.034

  11. Eringen, A. C. and Suhubi, E. S., Nonlinear theory of simple microelastic solids. DOI: 10.1016/0020-7225(64)90004-7

  12. Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  13. Fish, J. and Kuznetsov, S., Computational continua. DOI: 10.1002/nme.2918

  14. Forest, S., Mechanics of generalized continua: Construction by homogenization. DOI: 10.1051/jp4:1998405

  15. Forest, S., Aufbau und identifikation von stoffgleichungen für höhere kontinua mittels homogenisierungsmethoden.

  16. Forest, S., Homogenization methods and the mechanics of generalized continua—Part 2. DOI: 10.2298/TAM0229113F

  17. Forest, S., The micromorphic approach for gradient elasticity, viscoplasticity and damage. DOI: 10.1061/(ASCE)0733-9399(2009)135:3(117)

  18. Forest, S. and Sab, K., Cosserat overall modeling of heterogeneous materials. DOI: 10.1016/S0093-6413(98)00059-7

  19. Forest, S. and Trinh, D. K., Generalized continua and non-homogeneous boundary conditions in homogenization methods. DOI: 10.1002/zamm.201000109

  20. Geers, M. G. D., Kouznetsova, V. G., and Brekelmans, W. A. M., Gradient-enhanced computational homogenization for the micro-macro scale transition. DOI: 10.1051/jp4:2001518

  21. Gologanu, M., Leblond, J. B., and Devaux, J., Continuum micromechanics, Recent extensions of Gurson's model for porous ductile metals.

  22. Janicke, R., Micromorphic media: Interpretation by homogenisation.

  23. Janicke, R. and Diebels, S., A numerical homogenisation strategy for micromorphic continua. DOI: 10.1393/ncc/i2009-10348-1

  24. Janicke, R., Diebels, S., Sehlhorst, H.-G., and Duster, A., Two-scale modelling of micromorphic continua. DOI: 10.1007/s00161-009-0114-4

  25. Kaczmarczyk, L., Pearce, C. J., and Bicanic, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. DOI: 10.1002/nme.2188

  26. Kanit, T., Forest, S., Galliet, I., Mounoury, V., and Jeulin, D., Determination of the size of the representative volume element for random composites: Statistical and numerical approach. DOI: 10.1016/S0020-7683(03)00143-4

  27. Kouznetsova, V., Geers, M. G. C., and Brekelmans, W. A. M., Size of a RVE in a second order computational homozenization framework.

  28. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  29. Larsson, R. and Diebels, S., A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. DOI: 10.1002/nme.1854

  30. Masiani, R. and Trovalusci, P., Cosserat and Cauchy materials as continuum models of brick masonry. DOI: 10.1007/BF00429930

  31. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  32. Mindlin, R. D. and Eshel, N. N., On first strain gradient theories in linear elasticity. DOI: 10.1016/0020-7683(68)90036-X

  33. Muhlich, U., Zybell, L., and Kuna, M., Micromechanical modelling of size effects in failure of porous elastic solids using first oder plane strain gradient eslaticity.

  34. Ostoja-Starzewski, M., Boccara, S. D., and Jasiuk, I., Couple-stress moduli and characteristic length of two-phase composite. DOI: 10.1016/S0093-6413(99)00039-7

  35. Pham, T. T. T., Un modèle d'endommagement à gradient de déformation à partir de la méthode d'homogénéisation pour les matériaux fragiles.

  36. Sansalone, V., Trovalusci, P., and Cleri, F., Multiscale modeling of composite materials by a multifield finite element approach. DOI: 10.1615/IntJMultCompEng.v3.i4.50

  37. Tekoglu, C. and Onck, P. R., Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models. DOI: 10.1016/j.jmps.2008.06.007

  38. Triantafyllidis, N. and Bardenhagen, S., The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. DOI: 10.1016/0022-5096(96)00047-6

  39. Trovalusci, P. and Masiani, R., Non-linear micropolar and classical continua for anisotropic discontinuous materials. DOI: 10.1016/S0020-7683(02)00584-X

  40. Yuan, X., Tomita, Y., and Andou, T., A micromechanical approach of nonlocal modeling for media with periodic microstructures. DOI: 10.1016/j.mechrescom.2007.07.004


Articles with similar content:

Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
FLEXURAL ANALYSIS OF FIBROUS COMPOSITE BEAMS UNDER VARIOUS MECHANICAL LOADINGS USING REFINED SHEAR DEFORMATION THEORIES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 1
Atteshamuddin Shamshuddin Sayyad, Yuwaraj M. Ghugal, R. R. Borkar
Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings
STRESS AND STRAIN OF MULTILAYER MODEL FOR THE LEFT VENTRICLE
Journal of Porous Media, Vol.20, 2017, issue 7
Prapatsorn Sangpin, Niti Kammuang-Lue, Pradit Terdtoon, Phrut Sakulchangsatjatai
Exact Relations for the Effective Properties of Nonlinearly Elastic Inhomogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
B. Bary, Qi-Chang He