Library Subscription: Guest
International Journal for Multiscale Computational Engineering

Published 6 issues per year

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

GRADIENT-DEPENDENT CONSTITUTIVE LAWS FOR A MODEL OF MICROCRACKED BODIES

Volume 10, Issue 6, 2012, pp. 581-597
DOI: 10.1615/IntJMultCompEng.2012002781
Get accessGet access

ABSTRACT

The aim of this paper is to propose nonlocal constitutive laws for a model of microcracked bodies. To do so, we use a multiscale approach: we call macroscopic the description in which the body is considered as a continuum and we refer to the microscopic scale when a crack is studied at a closer view. We first propose an approximation of the stress and strain fields in the vicinity of a crack, considering the neighboring discontinuities. We then use equivalence principles between micro- and macroscopic scales in order to determine the expression of the macroscopic constitutive assignments of the body. The latter are written not only in terms of the local values of the deformation and the local values of the geometrical variables representative of the crack field, but also in terms of their gradients. Numerical implementations are performed; we compare constitutive laws obtained from local and nonlocal approaches.

REFERENCES
  1. Bazant, Z. P., Why continuum damage is non-local: micromechanical arguments. DOI: 10.1061/(ASCE)0733-9399(1991)117:5(1070)

  2. Bazant, Z. P. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  3. Bongue Boma, M., Modélisation de la fissuration pour l'évaluation de la perte d'étanchéité des structures en béton armé sous chargements mécaniques.

  4. Bongue-Boma, M. and Brocato, M., Liquids with vapour bubbles. DOI: 10.1016/j.camwa.2007.04.006

  5. Bongue Boma, M. and Brocato, M., A continuum model of micro-cracks in concrete. DOI: 10.1007/s00161-009-0130-4

  6. Bui, H.-D., Mécanique de la Rupture Fragile.

  7. Capriz, G., Continua with Microstructure.

  8. Cosserat, E. and Cosserat, F., Théorie des corps déformables.

  9. de Borst, R., Pamin, J., Peerlings, R., and Sluys, B., On gradient enhanced damage and plasticity models for failure in quasi brittle and frictional materials. DOI: 10.1007/BF00356485

  10. Denarie, E., Etude expérimentale des couplages viscoélatsicité-croissances des fissures dans les bétons de ciment. DOI: 10.5075/epfl-thesis-2195

  11. Edelen, D. G. B., Green, A., and Laws, N., Nonlocal continuum mechanics. DOI: 10.1007/BF00251544

  12. Epstein, M. and de Leon, M., Geometrical theory of uniform cosserat media. DOI: 10.1016/S0393-0440(97)00042-9

  13. Grassl, P. and Jirasek, M., Damage-plastic model for concrete failure. DOI: 10.1016/j.ijsolstr.2006.06.032

  14. Kachanov, L. M., Time of the rupture process under creep conditions.

  15. Kratzig, W. B. and Polling, R., An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. DOI: 10.1016/j.compstruc.2004.03.002

  16. Maugin, G. A., Internal variables and dissipative structures. DOI: 10.1515/jnet.1990.15.2.173

  17. Mazars, J., Application de la Mécanique de lendommagement au comportement non linéaire et à la rupture du béton de structure.

  18. Mazars, J., A description of micro- and macroscale damage of concrete structures. DOI: 10.1016/0013-7944(86)90036-6

  19. Nguyen, G. D., A thermodynamic approach to non-local damage modelling of concrete. DOI: 10.1016/j.ijsolstr.2007.11.001

  20. Santaoja, K., Gradient theory from the thermomechanics point of view. DOI: 10.1016/S0013-7944(03)00038-9

  21. Simonin, F., Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium.

  22. Ward, M. A. and Cook, D. J., The mechanism of tensile creep in concrete. DOI: 10.1680/macr.1969.21.68.151

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain