Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012003061
pages 567-580

CONTINUUM TO DISCONTINUUM TRANSITION DURING FAILURE IN NONLOCAL DAMAGE MODELS

David Gregoire
Laboratoire des Fluides Complexes, UMR5150, Universite de Pau et des Pays de I'Adour, France
Laura B. Rojas-Solano
Laboratoire des Fluides Complexes, UMR5150, Universite de Pau et des Pays de I'Adour, France
Gilles Pijaudier-Cabot
Laboratoire des Fluides Complexes, UMR5150, Universite de Pau et des Pays de I'Adour, France

ABSTRACT

The purpose of this paper is to discuss how boundary and emerging boundary effects can be folded into a new nonlocal damage formulation based on integral models that provides a consistent transition toward discrete cracking. Several enhancements of the original nonlocal damage model inspired from micromechanics of interacting defects are considered. The goals of the modified nonlocal formulation are threefold: (i) the distribution of damage at failure should be mesh independent; (ii) the model should be able to capture the continuous-discontinuous transition involved in the process of failure due to increasing stresses; (iii) the discontinuous displacements fields resulting from complete failure should be approached as closely as possible. A 1D example illustrates the capabilities of the original and enhanced models. It is found that a combination of increasing/decreasing interactions and nonlocal effects during failure provides the most suitable results.

REFERENCES

  1. Bazant, Z., Nonlocal damage theory based on micromechanics of crack interactions. DOI: 10.1061/(ASCE)0733-9399(1994)120:3(593)

  2. Bazant, Z. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  3. Desmorat, R. and Gatuingt, F., Introduction of an internal time in nonlocal integral theories. DOI: 10.1201/b10546-15

  4. Dufour, F., Pijaudier-Cabot, G., Choinska, M., and Huerta, A., Extraction of a crack opening from a continuous approach using regularized damage models.

  5. Ganghoffer, J. and De Borst, R., A new framework in nonlocal mechanics. DOI: 10.1016/S0020-7225(99)00030-0

  6. Germain, N., Besson, J., and Feyel, F., Composite layered materials: Anisotropic nonlocal damage models. DOI: 10.1016/j.cma.2007.04.009

  7. Giry, C., Dufour, F., Mazars, J., and Kotronis, P., Stress state influence on nonlocal interactions in damage modelling. DOI: 10.1201/b10546-18

  8. Grassl, P. and Jirasek, M., Plastic model with non-local damage applied to concrete. DOI: 10.1002/nag.479

  9. Gregoire, D., Maigre, H., and Combescure, A., New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials. DOI: 10.1016/j.ijsolstr.2009.06.003

  10. Gregoire, D., Maigre, H., Rethore, J., and Combescure, A., Dynamic crack propagation under mixed-mode loading—Comparison between experiments and x-FEM simulations. DOI: 10.1016/j.ijsolstr.2007.02.044

  11. Kolsky, H., An investigation of the mechanical properties of materials at very high rates of loading. DOI: 10.1088/0370-1301/62/11/302

  12. Krayani, A., Pijaudier-Cabot, G., and Dufour, F., Boundary effect on weight function in nonlocal damage model. DOI: 10.1016/j.engfracmech.2009.07.007

  13. Mazars, J., A description of micro-and macroscale damage of concrete structures. DOI: 10.1016/0013-7944(86)90036-6

  14. Peerlings, R., De Borst, R., Brekelmans, W., and De Vree, J., Gradient enhanced damage for quasi-brittle materials. DOI: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D

  15. Peerlings, R., Geers, M., De Borst, R., and Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua. DOI: 10.1016/S0020-7683(01)00087-7

  16. Pijaudier-Cabot, G. and Bazant, Z., Nonlocal damage theory. DOI: 10.1061/(ASCE)0733-9399(1987)113:10(1512)

  17. Pijaudier-Cabot, G. and Benallal, A., Strain localization and bifurcation in a nonlocal continuum. DOI: 10.1016/0020-7683(93)90232-V

  18. Pijaudier-Cabot, G. and Berthaud, Y., Damage and interactions in a microcracked medium. non local formulation.

  19. Pijaudier-Cabot, G. and Dufour, F., Boundary and evolving boundary effects in non local damage models. DOI: 10.1201/b10546-25

  20. Pijaudier-Cabot, G., Haidar, K., and Dube, J., Non-local damage model with evolving internal length. DOI: 10.1002/nag.367

  21. Pijaudier-Cabot, G., Mazars, J., and Pulikowski, J., Steel-concrete bond analysis with nonlocal continuous damage. DOI: 10.1061/(ASCE)0733-9445(1991)117:3(862)

  22. Saanouni, K., Chaboche, J., and Lesne, P., On the creep crack-growth prediction by a non local damage formulation.

  23. Tvergaard, V. and Needleman, A., Effects of nonlocal damage in porous plastic solids. DOI: 10.1016/0020-7683(94)00185-Y


Articles with similar content:

Modeling the Particle Size and Interfacial Hardening Effects in Metal Matrix Composites with Dispersed Particles at Decreasing Microstructural Length Scales
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Rashid K. Abu Al-Rub
BEYOND BLACK-BOXES IN BAYESIAN INVERSE PROBLEMS AND MODEL VALIDATION: APPLICATIONS IN SOLID MECHANICS OF ELASTOGRAPHY
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 5
L. Bruder, Phaedon-Stelios Koutsourelakis
AN XFEM BASED MULTISCALE APPROACH TO FRACTURE OF HETEROGENEOUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Mirmohammadreza Kabiri, Franck J. Vernerey
MULTISCALE HOMOGENIZATION SCHEMES FOR THE CONSTRUCTION OF SECOND-ORDER GRADE ANISOTROPIC CONTINUUM MEDIA OF ARCHITECTURED MATERIALS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 1
Jean-François Ganghoffer, F. Dos Reis, Yosra Rahali
AN ATOMISTIC–CONTINUUM MULTISCALE METHOD FOR MODELING THE THERMOMECHANICAL BEHAVIOR OF HETEROGENEOUS NANOSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
M. Jahanshahi, N. Jafarian, N. Heidarzadeh, Amir R. Khoei