Library Subscription: Guest
Multiphase Science and Technology

Published 4 issues per year

ISSN Print: 0276-1459

ISSN Online: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

EXPERIMENTAL STUDY OF BUBBLE BEHAVIOR AND LOCAL HEAT FLUX IN POOL BOILING UNDER VARIABLE GRAVITATIONAL CONDITIONS

Volume 21, Issue 4, 2009, pp. 329-350
DOI: 10.1615/MultScienTechn.v21.i4.40
Get accessGet access

ABSTRACT

This paper presents the results of a nucleate boiling experiment performed in the framework of the 42nd European Space Agency parabolic flight campaign. Nucleate boiling of FC-72 was established at a single artificial cavity on a thin stainless steel heating foil. The bubble shape and the temperature distribution of the heating foil were measured via high-speed imaging and infrared thermography at different gravity levels and during transition phases between these levels. The influence of gravity on bubble frequency and departure diameter was evaluated. The transient heat flux distribution was calculated by applying an energy balance at each pixel of the infrared temperature image. This heat flux distribution is presented for a complete bubble cycle (growing, detachment and rise), bubble coalescence, and satellite bubble merger.

REFERENCES
  1. Barthes, M., Raynard, C., Santini, R., and Tadrist, L., Experimental study of a single vapour bubble growth: Heat and mass transfer analysis-Influence of non-condensable presence on the onset of Marangoni convection. DOI: 10.1615/IHTC13.p12.90

  2. Bonjour, J., Clausse, M., and Lallemand, M., Experimental study of the coalescence phenomenon during nucleate pool boiling. DOI: 10.1016/S0894-1777(99)00044-8

  3. Carey, V. P., Liquid-Vapour Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment.

  4. Chen, T. and Chung, J. N., Coalescence of bubbles in nucleate boiling an microheaters. DOI: 10.1016/S0017-9310(01)00334-9

  5. Di Marco, P. and Grassi, W., Pool boiling in microgravity: assessed results and open issues.

  6. Esmaeeli, A. and Tryggvason, G., Computations of explosive boiling in microgravity.

  7. Fritz, W., Berechnung des Maximalvolumens von Dampfblasen.

  8. Fuchs, T., Kern, J., and Stephan, P., A transient nucleate boiling model including microscale effects and wall heat transfer. DOI: 10.1115/1.2349502

  9. Golobic, I., Petkovsek, J., Baselj, M., Papez, A., and Kenning, D. B. R., Experimental determination of transient wall temperature distribution close to growing vapor bubbles. DOI: 10.1007/s00231-007-0295-y

  10. Kim, J., Benton, J. F., and Wisniewski, D., Pool boiling heat transfer on small heaters: Effect of gravity and subcooling. DOI: 10.1016/S0017-9310(02)00108-4

  11. Lee, H. S. and Merte, H., Pool boiling mechanisms in microgravity.

  12. Malenkov, I. G., The frequency of vapor bubble separation as function of bubble size.

  13. Mukherjee, A. and Dhir, V. K., Study of lateral merger of vapor bubbles during nucleate pool boiling. DOI: 10.1115/1.1834614

  14. Reid, R. C., Rapid phase transitions from liquid to vapor. DOI: 10.1016/S0065-2377(08)60252-5

  15. Sodtke, C., Kern, J., Schweizer, N., and Stephan, P., High resolution measurements of wall temperature distribution underneath a single vapour bubble under low gravity conditions. DOI: 10.1016/j.ijheatmasstransfer.2005.07.054

  16. Stephan, P. and Hammer, J., A new model for nucleate boiling heat transfer.

  17. Stoica, V. and Stephan, P., Phase shift interferometry for accurate temperature measurement around a vapor bubble. DOI: 10.1080/08916150701229881

  18. Straub, J., Zell, M., and Vogel, B., Boiling under microgravity conditions.

  19. Vogel, B. and Straub, J., Single bubble experiments in pool boiling-Results from TEXUS 26.

  20. Wagner, E., Sodtke, C., Schweizer, N., and Stephan, P., Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements. DOI: 10.1007/s00231-006-0146-2

  21. Wagner, E., Stephan, P., Koeppen, O., and Auracher, H., High resolution temperature measurements at moving vapor/liquid and vapor/liquid/solid interfaces during bubble growth in nucleate boiling.

  22. Wagner, E., Hochauflosende Messungen beim Blasensieden von Reinstoffen und binaren Gemischen.

CITED BY
  1. aus der Wiesche Stefan, Bardas Ufuk, Uhkötter Stephan, Boiling heat transfer on large diamond and SiC heaters: The influence of thermal wall properties, International Journal of Heat and Mass Transfer, 54, 9-10, 2011. Crossref

  2. Golobic I., Petkovsek J., Kenning D.B.R., Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography, International Journal of Heat and Mass Transfer, 55, 4, 2012. Crossref

  3. Schweizer Nils, Di Marco Paolo, Stephan Peter, Investigation of wall temperature and heat flux distribution during nucleate boiling in the presence of an electric field and in variable gravity, Experimental Thermal and Fluid Science, 44, 2013. Crossref

  4. Kim Tae Hoon, Kommer Eric, Dessiatoun Serguei, Kim Jungho, Measurement of two-phase flow and heat transfer parameters using infrared thermometry, International Journal of Multiphase Flow, 40, 2012. Crossref

  5. Kunkelmann Christian, Stephan Peter, Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100, International Journal of Refrigeration, 33, 7, 2010. Crossref

  6. Kunkelmann Christian, Ibrahem Khalid, Schweizer Nils, Herbert Stefan, Stephan Peter, Gambaryan-Roisman Tatiana, The effect of three-phase contact line speed on local evaporative heat transfer: Experimental and numerical investigations, International Journal of Heat and Mass Transfer, 55, 7-8, 2012. Crossref

  7. Diana A., Castillo M., Steinberg T., Brutin D., Asymmetric interface temperature during vapor bubble growth, Applied Physics Letters, 103, 3, 2013. Crossref

  8. Yoo Junsoo, Estrada-Perez Carlos E., Hassan Yassin A., An accurate wall temperature measurement using infrared thermometry with enhanced two-phase flow visualization in a convective boiling system, International Journal of Thermal Sciences, 90, 2015. Crossref

  9. Li Zhen-Dong, Zhang Liang, Zhao Jian-Fu, Li Hui-Xiong, Li Kai, Wu Ke, Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72, International Journal of Heat and Mass Transfer, 84, 2015. Crossref

  10. Colin Catherine, Kannengieser Olivier, Bergez Wladimir, Lebon Michel, Sebilleau Julien, Sagan Michaël, Tanguy Sébastien, Nucleate pool boiling in microgravity: Recent progress and future prospects, Comptes Rendus Mécanique, 345, 1, 2017. Crossref

  11. Bucci Matteo, Richenderfer Andrew, Su Guan-Yu, McKrell Thomas, Buongiorno Jacopo, A mechanistic IR calibration technique for boiling heat transfer investigations, International Journal of Multiphase Flow, 83, 2016. Crossref

  12. Wu Ke, Li Zhen-Dong, Zhao Jian-Fu, Li Hui-Xiong, Li Kai, Partial Nucleate Pool Boiling at Low Heat Flux: Preliminary Ground Test for SOBER-SJ10, Microgravity Science and Technology, 28, 2, 2016. Crossref

  13. Sarker D., Franz R., Ding W., Hampel U., Single bubble dynamics during subcooled nucleate boiling on a vertical heater surface: An experimental analysis of the effects of surface characteristics, International Journal of Heat and Mass Transfer, 109, 2017. Crossref

  14. Nandi K., Giustini G., Numerical Modeling of Boiling, in Two-Phase Flow for Automotive and Power Generation Sectors, 2019. Crossref

  15. Lebon M., Sebilleau J., Colin C., Dynamics of growth and detachment of an isolated bubble on an inclined surface, Physical Review Fluids, 3, 7, 2018. Crossref

  16. Hänsch Susann, Walker Simon, Microlayer formation and depletion beneath growing steam bubbles, International Journal of Multiphase Flow, 111, 2019. Crossref

  17. Jo Jaeyeong, Kim Jungho, Kim Sung Jin, Experimental investigations of heat transfer mechanisms of a pulsating heat pipe, Energy Conversion and Management, 181, 2019. Crossref

  18. Colombo Marco, Fairweather M., Walker Simon P., Kumar Mukesh, Moharana Avinash, Nayak Arun K., Joshi Jyeshtharaj B., Dasgupta Arnab, Chandraker Dinesh K., Vesa Tanskanen, Giteshkumar Patel, CFD model development for two-phase flows, in Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment, 2019. Crossref

  19. Al Hashimi Husain, Hammer Caleb F., Lebon Michel T., Zhang Dan, Kim Jungho, Phase-Change Heat Transfer Measurements Using Temperature-Sensitive Paints, Journal of Heat Transfer, 140, 3, 2018. Crossref

  20. Jung J., Kim S. J., Kim J., Observations of the Critical Heat Flux Process During Pool Boiling of FC-72, Journal of Heat Transfer, 136, 4, 2014. Crossref

  21. Franz Benjamin, Sielaff Axel, Stephan Peter, Numerical Investigation of Successively Nucleating Bubbles During Subcooled Flow Boiling of FC-72 in Microgravity, Microgravity Science and Technology, 33, 2, 2021. Crossref

  22. Karchevsky A. L., Cheverda V. V., Marchuk I. V., Gigola T. G., Sulyaeva V. S., Kabov O. A., Heat Flux Density Evaluation in the Region of Contact Line of Drop on a Sapphire Surface Using Infrared Thermography Measurements, Microgravity Science and Technology, 33, 4, 2021. Crossref

  23. Li Junhui, Weisensee Patricia B., Low Weber number droplet impact on heated hydrophobic surfaces, Experimental Thermal and Fluid Science, 130, 2022. Crossref

  24. Kunts K A, Kochkin D Y, Kabov O A, Evaporation of a sessile droplet pinned by a groove on a heated substrate, Journal of Physics: Conference Series, 2211, 1, 2022. Crossref

  25. Oikonomidou O., Evgenidis S., Argyropoulos C., Zabulis X., Karamaoynas P., Raza M.Q., Sebilleau J., Ronshin F., Chinaud M., Garivalis A.I., Kostoglou M., Sielaff A., Schinnerl M., Stephan P., Colin C., Tadrist L., Kabov O., Di Marco P., Karapantsios T., Bubble growth analysis during subcooled boiling experiments on-board the international space station: Benchmark image analysis, Advances in Colloid and Interface Science, 308, 2022. Crossref

  26. Minakov A. V., Lobasov A. S., Shebelev A. V., Zaitsev D. V., Kabov O. A., Flow Regimes of a Liquid Film Carried Away by a Gas Flow in a Flat Horizontal Channel under Isothermal Conditions, Journal of Applied and Industrial Mathematics, 16, 3, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain