Library Subscription: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Published 4 issues per year

ISSN Print: 1093-3611

ISSN Online: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

TIME-DEPENDENT PLASMA PROPERTIES STUDIED WITH A 2-D THOMSON SCATTERING SYSTEM

Volume 6, Issue 4, 2002, 14 pages
DOI: 10.1615/HighTempMatProc.v6.i4.70
Get accessGet access

ABSTRACT

Thomson scattering was used to monitor the temporal behavior of the electron gas during the power interruption and power modulation of respectively an inductively coupled plasma (ICP) in argon and a capacitively coupled plasma (CCP) in He both operating under atmospheric conditions. In both cases we studied the electron gas during the decay and re-ignition phase. It is found that experimental results can only be understood if we accept that molecular ions play a dominant role during the plasma decay phase. This is remarkable since plasmas in noble gases are known as atomic plasmas. Interesting features are the anomalous heating of the electron gas during the decay of the Ar-ICP and the heating of the higher energy part of the electron energy distribution function (EEDF) in He-CCP. The EEDF of the He-CCP was found to be far from Maxwellian.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain