Library Subscription: Guest
Journal of Flow Visualization and Image Processing

Published 4 issues per year

ISSN Print: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

BEHAVIOR OF WALL SHEAR STRESS NEAR CAROTID ARTERY BIFURCATION AT ELEVATED PULSE RATES

Volume 27, Issue 3, 2020, pp. 249-267
DOI: 10.1615/JFlowVisImageProc.2020031021
Get accessGet access

ABSTRACT

This paper reports a numerical investigation on the blood flow patterns and wall shear stress (WSS) distribution for both healthy and stenosed carotid arteries near the bifurcation region. Pulsatile inflow velocity profiles are considered which resemble the physiological flow waveforms. Outlet pressure variation is specified through a two-element Windkessel model. The Carreau model is used for the non-Newtonian blood rheology. Axial velocity contours and streamtraces are depicted at different phases of the pulsation cycle. Three different pulse rates are considered and the effects of the elevated pulse rates in the spatial distribution of time-averaged WSS and oscillatory shear index (OSI) are reported. It is observed that at the higher pulse rates, the healthy arteries exhibit higher WSS and lower OSI levels while the stenosed arteries behave oppositely. Local velocity fluctuations are identified through frequency analysis of velocity at the post-stenotic region. These fluctuations are observed to be correlated with the low and oscillatory nature of wall shear stress in the stenosed arteries at elevated pulse rates.

REFERENCES
  1. Bakker, E.N., Pistea, A., Spaan, J.A., Rolf, T., De Vries, C.J., Van Rooijen, N., Candi, E., and VanBavel, E., Flow-Dependent Remodeling of Small Arteries in Mice Deficient for Tissue-Type Transglutaminase: Possible Compensation by Macrophage-Derived Factor XIII, Circulation Res., vol. 99, no. 1, pp. 86-92, 2006. DOI: 10.1161/01.RES.0000229657.83816.a7.

  2. Blackburn, H.M. and Sherwin, S.J., Instability Modes and Transition of Pulsatile Stenotic Flow: Pulse-Period Dependence, J. Fluid Mech., vol. 573, pp. 57-88, 2007. DOI: 10.1017/ S0022112006003740.

  3. De Zelicourt, D., Ge, L., Wang, C., Sotiropoulos, F., Gilmanov, A., and Yoganathan, A., Flow Simulations in Arbitrarily Complex Cardiovascular Anatomies-An Unstructured Cartesian Grid Approach, Comput. Fluids, vol. 38, no. 9, pp. 1749-1762, 2009. DOI: 10.1016/j.compfluid.2009.03.005.

  4. Fluent, ANSYS Fluent Theory Guide 15.0, Canonsburg, PA: ANSYS, 2013.

  5. Francis, S.E., Continuous Estimation of Cardiac Output and Arterial Resistance from Arterial Blood Pressure Using a Third-Order Windkessel Model, Ph.D, Massachusetts Institute of Technology, 2007.

  6. Geomagic Design X; Version 17, 3D Computer-Aided Design (CAD) Software, Rock Hill, SC: 3D Systems, 2015.

  7. Gharahi, H., Zambrano, B.A., Zhu, D.C., DeMarco, J.K., and Baek, S., Computational Fluid Dynamic Simulation of Human Carotid Artery Bifurcation Based on Anatomy and Volumetric Blood Flow Rate Measured with Magnetic Resonance Imaging, Int. J. Adv. Eng. Sci. Appl. Math., vol. 8, no. 1, pp. 46-60, 2016. DOI: 10.1007/s12572-016-0161-6.

  8. Giannoglou, G.D., Chatzizisis, Y.S., Zamboulis, C., Parcharidis, G.E., Mikhailidis, D.P., and Louridas, G.E., Elevated Heart Rate and Atherosclerosis: An Overview of the Pathogenetic Mechanisms, Int. J. Cardiol., vol. 126, no. 3, pp. 302-312, 2008. DOI: 10.1016/j.ijcard.2007.08.077.

  9. Glor, F.P., Ariff, B., Hughes, A.D., Crowe, L.A., Verdonck, P.R., Barratt, D.C., Thom, S.M., Firmin, D.N., and Xu, X.Y., Image-Based Carotid Flow Reconstruction: A Comparison between MRI and Ultrasound, Physiol. Meas, vol. 25, no. 6, p. 1495, 2004. DOI: 10.1088/0967-3334/25/6/014.

  10. Glor, F.P., Long, Q., Hughes, A.D., Augst, A.D., Ariff, B., Thom, S.M., Verdonck, P.R., and Xu, X.Y., Reproducibility Study of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Carotid Bifurcation Flow, Annals Biomed. Eng., vol. 31, no. 2, pp. 142-151, 2003. DOI: 10.1114/1.1537694.

  11. Griffith, M.D., Leweke, T., Thompson, M.C., and Hourigan, K., Steady Inlet Flow in Stenotic Geometries: Convective and Absolute Instabilities, J. Fluid Mech., vol. 616, pp. 111-133, 2008. DOI: 10.1017/S0022112008004084.

  12. Johnston, B.M., Johnston, P.R., Corney, S., and Kilpatrick, D., Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations, J. Biomech., vol. 37, no. 5, pp. 709-720, 2004. DOI: 10.1016/j.jbiomech.2003.09.016.

  13. Koller, A., Flow-Dependent Remodeling of Small Arteries: The Stimuli and the Sensors Are (Still) in Question, Circulation Res., vol. 99, no. 1, 2006. DOI: 10.1161/01.RES.0000233144.65663.23.

  14. Long, Q., Xu, X.Y., Ramnarine, K.V., and Hoskins, P., Numerical Investigation of Physiologically Realistic Pulsatile Flow through Arterial Stenosis, J. Biomech., vol. 34, no. 10, pp. 1229-1242, 2001. DOI: https://doi.org/10.1016/S0021-9290(01)00100-2.

  15. Malek, A.M., Alper, S.L., and Izumo, S., Hemodynamic Shear Stress and Its Role in Atherosclerosis, JAMA, vol. 282, no. 21, pp. 2035-2042, 1999. DOI:10.1001/jama.282.21.2035.

  16. Mallinger, F. and Drikakis, D., Instability in Three-Dimensional, Unsteady, Stenotic Flows, Int. J. Heat Fluid Flow, vol. 23, no. 5, pp. 657-663, 2002. DOI: 10.1016/S0142-727X(02)00161-3.

  17. McElroy, M. and Keshmiri, A., Impact of Using Conventional Inlet/Outlet Boundary Conditions on Haemodynamic Metrics in a Subject-Specific Rabbit Aorta, Proc. Inst. Mech. Eng., PartH, J. Eng. Med., vol. 232, no. 2, pp. 103-113, 2018. DOI: 10.1177/0954411917699237.

  18. Moore, J.E., Jr., Xu, C., Glagov, S., Zarins, C.K., and Ku, D.N., Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis, Atherosclerosis, vol. 110, no. 2, pp. 225-240, 1994. DOI: 10.1016/0021-9150(94)90207-0.

  19. Oyre, S., Ringgaard, S., Kozerke, S., Paaske, W.P., Scheidegger, M.B., Boesiger, P., and Pedersen, E.M., Quantitation of Circumferential Subpixel Vessel Wall Position and Wall Shear Stress by Multiple Sectored Three-Dimensional Paraboloid Modeling of Velocity Encoded Cine MR, Magn. Resonance Med, vol. 40, no. 5, pp. 645-655. DOI: 10.1002/mrm.1910400502.

  20. Pollock, M.L., Gaesser, G.A., Butcher, J.D., Despres, J.P., Dishman, R.K., Franklin, B.A., and Garber, C.E., ACSM Position Stand: The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults, Med. Sci. Sports Exerc., vol. 30, no. 6, pp. 975-991, 1998. DOI: 10.1097/00005768-199806000-00032.

  21. Razavi, A., Shirani, E., and Sadeghi, M.R., Numerical Simulation of Blood Pulsatile Flow in a Stenosed Carotid Artery Using Different Rheological Models, J. Biomech., vol. 44, no. 11, pp. 2021-2030, 2011, https://doi.org/10.1016/jobiomech2011.04.023.

  22. Rojczyk, M., Ostrowski, Z., Adamczyk, W., Melka, B., Bandola, D., Gracka, M., and Nowak, A.J., CFD Analysis of Blood Flow within Aorta of Patient with Coarctation of Aorta, Studia Informatica, vol. 37, no. 3A (125), pp. 43-55, 2016.

  23. Shibeshi, S.S. and Collins, W.E., The Rheology of Blood Flow in a Branched Arterial System, Appl. Rheol, vol. 15, no. 6, p. 398, 2005. DOI: 10.1515/arh-2005-0020.

  24. Sood, T., Roy, S., and Pathak, M., Effect of Pulse Rate Variation on Blood Flow through Axisymmetric and Asymmetric Stenotic Artery Models, Math. Biosci, vol. 298, pp. 1-18, 2018. DOI: 10.1016/j. mbs.2018.01.008.

  25. Stergiopulos, N., Meister, J.J., and Westerhof, N., Simple and Accurate Way for Estimating Total and Segmental Arterial Compliance: The Pulse Pressure Method, Annals Biomed. Eng., vol. 22, no. 4, pp. 392-397, 1994. DOI: 10.1007/BF02368245.

  26. Sun, A., Tian, X., Zhang, N., Xu, Z., Deng, X., Liu, M., and Liu, X., Does Lower Limb Exercise Worsen Renal Artery Hemodynamics in Patients with Abdominal Aortic Aneurysm?, PloS One, vol. 10, no. 5, 2015. DOI: 10.1371/journal.pone.0125121.

  27. Suzuki, J.I., Shimamoto, R., Nishikawa, J., Tomaru, T., Nakajima, T., Nakamura, F., and Toyooka, T., Vector Analysis of the Hemodynamics of Atherogenesis in the Human Thoracic Aorta Using MR Velocity Mapping, Am. J. Roentgenol., vol. 171, no. 5, pp. 1285-1290, 1998. DOI: 10.2214/ ajr.171.5.9798863.

  28. Tanaka, H., Monahan, K.D., and Seals, D.R., Age-Predicted Maximal Heart Rate Revisited, J. Am. College Cardiol, vol. 37, no. 1, pp. 153-156, 2001. DOI: 10.1016/S0735-1097(00)01054-8.

  29. Thompson, P.D., Buchner, D., Pina, I.L., Balady, G.J., Williams, M.A., Marcus, B.H., and Fletcher, G.F., Exercise and Physical Activity in the Prevention and Treatment of Atherosclerotic Cardiovascular Disease: A Statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), Circulation, vol. 107, no. 24, pp. 3109-3116 2003. DOI: 10.1161/01. CIR.0000075572.40158.77.

  30. Williams, B. and Lacy, P.S., Impact of Heart Rate on Central Aortic Pressures and Hemodynamics. Analysis from the CAFE (Conduit Artery Function Evaluation) Study: CAFE-Heart Rate, J. Am. Coll. Cardiol, vol. 54, pp. 705-713, 2009. DOI: 10.1016/j.jacc.2009.02.088.

  31. Younis, H.F., Kaazempur-Mofrad, M.R., Chung, C., Chan, R.C., and Kamm, R.D., Computational Analysis of the Effects of Exercise on Hemodynamics in the Carotid Bifurcation, Annals Biomed. Eng., vol. 31, no. 8, pp. 995-1006, 2003. DOI: 10.1114/1.1590661.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain