Library Subscription: Guest
Journal of Flow Visualization and Image Processing

Published 4 issues per year

ISSN Print: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

EVAPORATION CHARACTERISTICS OF A CONFINED NANOFLUID BRIDGE BETWEEN TWO HEATED PARALLEL PLATES

Volume 25, Issue 3-4, 2018, pp. 297-328
DOI: 10.1615/JFlowVisImageProc.2018027862
Get accessGet access

ABSTRACT

This paper focusses on understanding the thermophysics and contact line dynamics of evaporating liquid bridges of pure water and nanofluids (0.1% and 0.5% v/v of CuO nanoparticles of average particle size < 50 nm), confined between two heated parallel glass substrates, maintained at a fixed distance, under near constant temperature boundary conditions (60°C and 80°C, respectively). Externally controlled, thin film indium-tin oxide (ITO) coated heaters were fabricated on the glass substrate to maintain the thermal boundary condition. High-resolution images of the liquid bridges were obtained during the evaporation process and later digitally analyzed to find the temporal evolution of relevant geometrical parameters. Subsequently, different thermal resistances involved were estimated, leading to the overall heat transfer coefficient. The order of magnitude of the interfacial resistance was found negligible as compared to the internal thermal resistance of the liquid bridge. Nanofluids evidently showed enhanced diffusional conductivity, and hence increased overall heat transfer coefficient, with a unique contact line motion, involving stick-slip behavior. Strong pinning effect at the contact line was observed during nanofluid evaporation, as a result of deposition of the particles, due to which the life span of nanofluid liquid bridge was much shorter than that of pure water. The rate of evaporation was dependent on the nanoparticle loading.

CITED BY
  1. Chattopadhyay Ankur, Sampathirao Srinivas Rao, Hegde Omkar, Basu Saptarshi, Malleable Patterns from the Evaporation of a Colloidal Liquid Bridge: Coffee Ring to the Scallop Shell, Langmuir, 38, 18, 2022. Crossref

  2. Jaiswal Ankush Kumar , Benard Baptiste , Garg Varun , Khandekar Sameer, EVAPORATION DYNAMICS OF LIQUID BRIDGE FORMED BETWEEN TWO HEATED HYDROPHILIC AND HYDROPHOBIC FLAT SURFACES , Interfacial Phenomena and Heat Transfer, 10, 1, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain