Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification
IF: 3.259 5-Year IF: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016012354
pages 1-17

GLOBAL SENSITIVITY ANALYSIS: AN EFFICIENT NUMERICAL METHOD FOR APPROXIMATING THE TOTAL SENSITIVITY INDEX

Matieyendou Lamboni
University of Guyane, Department DFRST, 2091 route de Baduel, 97346 Cayenne Cedex, French Guiana (present address); 228-UMR Espace-Dev, 275 route de Montabo, 97323 Cayenne Cedex, French Guiana (present address); EC-Joint Research Centre, Institute for Environment and Sustainability, Via Fermi 2749, 21027 Ispra, Italy

ABSTRACT

Variance-based sensitivity analysis and multivariate sensitivity analysis aim to apportion the variability of model output(s) into input factors and their interactions. Total sensitivity index (TSI) gives for each input its overall contribution, including the effects of its interactions with all the other inputs, in the variability of the model output(s). We investigate a numerical approximation of TSIs mainly based upon quadrature rules and quasi-Monte Carlo. The estimation of a TSI relies on the estimation of a total effect function (TEF), which allows for computing the TSI values by taking its variance. First, the paper derives the specific formula for the computation of the TEF, including the theoretical properties of the approximation, and second, it gives an overview of its application in many situations. Our approach gives the exact estimation of TSIs for a class of exact quadrature rules (especially for polynomial functions) and an interesting approximation for other functions. Numerical tests show the faster convergence rate of our approach and their usefulness in practice.


Articles with similar content:

ASSESSING THE PERFORMANCE OF LEJA AND CLENSHAW-CURTIS COLLOCATION FOR COMPUTATIONAL ELECTROMAGNETICS WITH RANDOM INPUT DATA
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 1
Dimitrios Loukrezis, Ulrich Römer, Herbert De Gersem
CLUSTERING-BASED COLLOCATION FOR UNCERTAINTY PROPAGATION WITH MULTIVARIATE DEPENDENT INPUTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
D. T. Crommelin, Anne W. Eggels, J. A. S. Witteveen
AN OVERVIEW OF INVERSE MATERIAL IDENTIFICATION WITHIN THE FRAMEWORKS OF DETERMINISTIC AND STOCHASTIC PARAMETER ESTIMATION
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Miguel A. Aguilo, Laura P. Swiler, Angel Urbina
HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
A NOVEL GLOBAL METHOD FOR RELIABILITY ANALYSIS WITH KRIGING
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Zhengming Wang, Xiaojun Duan, Zigan Zhao