Library Subscription: Guest
Journal of Enhanced Heat Transfer

Published 8 issues per year

ISSN Print: 1065-5131

ISSN Online: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

EXPERIMENTAL AND NUMERICAL STUDY OF TWO-PHASE FLOW IN A RECTANGULAR MINI-CHANNEL WITH SUDDEN EXPANSION STRUCTURE

Volume 27, Issue 2, 2020, pp. 173-194
DOI: 10.1615/JEnhHeatTransf.2020033052
Get accessDownload

ABSTRACT

The mini-channel heat sink is widely seen as a promising heat exchanger owing to its high efficiency and small size. In order to design an optimal structure and enable its operation at high efficiency, it is critical to predict the two-phase pressure drop for this type of channel. In this study, the pressure drop through a single rectangular mini-channel with sudden expansion is measured, and five primary flow patterns, bubble flow, slug flow, plug flow, jetlike flow, and annular flow, are observed by visualization experiments. A computational fluid dynamics model is also proposed for them. It is found that the pressure gradient on the bubble surface is very large, and the pressure drop of gas-liquid flow is closely related to the flow pattern. A new frictional pressure drop prediction model is also proposed using a modified parameter C with the effects of small channel diameter, viscosity, surface tension, mass velocity, flow pattern, and flow regime. Also, the new correlation has a better performance in predicting the two-phase frictional pressure drop within a wide range of mass flux.

REFERENCES
  1. Abdelall, F.F., Hahm, G., Ghiaasiaan, S.M., Abdel-Khalik, S.I., Jeter, S.S., Yoda, M., and Sadowski, D.L., Pressure Drop Caused by Abrupt Flow Area Changes in Small Channels, Exp. Therm. Fluid Sci., vol. 29, no. 4, pp. 425-434,2004.

  2. Abood, S.A., Abdulwahid, M.A., and Almudhaffar, M.A., Comparison between the Experimental and Numerical Study of (Air-Oil) Flow Patterns in Vertical Pipe, Case Studies Therm. Eng., vol. 14, p. 100424, 2019.

  3. Ahmed, W.H., Ching, C.Y., and Shoukri, M., Pressure Recovery of Two-Phase Flow across Sudden Expansions, Int. J. Multiphase Flow, vol. 33, no. 6, pp. 575-594, 2006.

  4. Alejandro, L.B., Francisco, V.G., and Jose, R.G.C., Non-Uniform Condensation of Refrigerant R134A in Mini-Channel Multiport Tubes: Two-Phase Pressure Drop and Heat Transfer Coefficient, J. Enhanced Heat Transf, vol. 22, no. 5, pp. 391-416,2015.

  5. Attou, A. and Bolle, L., A New Correlation for the Two-Phase Pressure Recovery Downstream from a Sudden Enlargement, Chem. Eng. Technol., vol. 20, no. 6, pp. 419-423, 1997.

  6. Carvalho, F.C.T., Figueiredo, M.M.F., and Serpa, A.L., Flow Pattern Classification in Liquid-Gas Flows Using Flow-Induced Vibration, Exp. Therm. Fluid Sci., vol. 112, p. 109950, 2020.

  7. Chai, L., Xia, G.D., and Wang, H.S., Laminar Flow and Heat Transfer Characteristics of Interrupted Microchannel Heat Sink with Ribs in the Transverse Microchambers, Int. J. Therm. Sci., vol. 110, pp. 1-11, 2016.

  8. Chen, Y., Liu, C.C., Chien, K.H., and Wang, C.C., Two-Phase Flow Characteristics across Sudden Expansion in Small Rectangular Channels, Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 696-706, 2007.

  9. Chen, Y., Chu, M.C., Liaw, J.S., and Wang, C.C., Two-Phase Flow Characteristics across Sudden Contraction in Small Rectangular Channels, Exp. Therm. Fluid Sci., vol. 32, no. 8, pp. 1609-1619,2008a.

  10. Chen, Y., Tseng, C.Y., Lin, Y.T., and Wang, C.C., Two-Phase Flow Pressure Change Subject to Sudden Contraction in Small Rectangular Channels, Int. J. Multiphase Flow, vol. 35, no. 3, pp. 297-306,2008b.

  11. Choi, C.W., Yu, D.I., and Kim, M.H., Adiabatic Two-Phase Flow in Rectangular Microchannels with Different Aspect Ratios: Part I-Flow Pattern, Pressure Drop and Void Fraction, Int. J. Heat Mass Transf., vol. 54, no. 1, pp. 616-624,2010.

  12. English, N.J. and Kandlikar, S.G., An Experimental Investigation into the Effect of Surfactants on Air-Water Two-Phase Flow in Minichannels, Heat Transf. Eng., vol. 27, no. 4, pp. 99-109, 2006.

  13. Fu, T.T., Ma, Y.G., Funfschilling, D., Zhu, C., and Li, H.Z., Squeezing-to-Dripping Transition for Bubble Formation in a Microfluidic T-Junction, Chem. Eng. Sci., vol. 65, no. 12, pp. 3739-3748, 2010.

  14. Guan, N., Jiang, G.L., Liu, Z.G., and Zhang, C.W., Flow and Heat Transfer in Hydrophobic Micro Pin Fins with Different Contact Angles, Heat Transf. Res, vol. 50, no. 8, pp. 799-820,2019.

  15. Guo, Z.X., Heat Transfer Enhancement-A Brief Review of 2018 Literature, J. Enhanced Heat Transf., vol. 26, no. 5, pp. 429-449,2019.

  16. Heyhat, M.M., Kowsary, F., Rashidi, A.M., Momenpour, M.H., and Amrollahi, A., Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-Based Al2O3 Nanofluids in Fully Developed Flow Regime, Exp. Therm. Fluid Sci., vol. 44, pp. 483-489, 2013.

  17. Kim, S.M. and Mudawar, I., Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows, Int. J. Heat Mass Transf., vol. 55, nos. 11-12, pp. 3246-3261,2012.

  18. Kumar, V. and Sarkar, J., Numerical and Experimental Investigations on Heat Transfer and Pressure Drop Characteristics of Al2O3-TiO2 Hybrid Nanofluid in Minichannel Heat Sink with Different Mixture Ratio, Powder Technol, vol. 345, pp. 717-727, 2019.

  19. Kumar, V. and Sarkar, J., Two-Phase Numerical Simulation of Hybrid Nanofluid Heat Transfer in Minichannel Heat Sink and Experimental Validation, Int. Commun. Heat Mass Transf., vol. 91, pp. 239-247,2018.

  20. Lee, H.J. and Lee, S.Y., Pressure Drop Correlations for Two-Phase Flow within Horizontal Rectangular Channels with Small Heights, Int. J. Multiphase Flow, vol. 27, no. 5, pp. 783-796, 2001.

  21. Lee, S., Devahdhanush, V.S., and Mudawar, I., Pressure Drop Characteristics of Large Length-to-Diameter Two-Phase Micro-Channel Heat Sinks, Int. J. Heat Mass Transf., vol. 115, pp. 1258-1275, 2017.

  22. Lei, Y.C. and Chen, Z.Q., Numerical Study of Condensation Flow Regimes in Presence of Non-Condensable Gas in Minichannels, Int. Commun. Heat Mass, vol. 106, pp. 1-8,2019.

  23. Liu, N. and Li, J.M., Experimental Study on Pressure Drop of R32, R152a, and R22 during Condensation in Horizontal Minichannels, Exp. Therm. Fluid Sci., vol. 71, pp. 14-24, 2016.

  24. Li, X.J. and Hibiki, T., Frictional Pressure Drop Correlation for Two-Phase Flows in Mini and Micro Single-Channels, Int. J. Multiphase Flow, vol. 90, pp. 29-45, 2017.

  25. Lockhart, R.W. and Martinelli, R.C., Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes, Chem. Eng. Prog., vol. 45, pp. 39-48, 1949.

  26. Mishima, K., Hibiki, T., and Nishihara, H., Some Characteristics of Gas-Liquid Flow in Narrow Rectangular Duct, Int. J. Multiphase Flow, vol. 19, no. 1, pp. 115-124, 1993.

  27. Moffat, R.J., Describing the Uncertainties in Experimental Results, Exp. Therm. Fluid Sci., vol. 1, no. 1, pp. 3-17, 1988.

  28. Nandakrishnan, S.L., Deepu, M., and Shine, S.R., Numerical Investigation of Heat-Transfer Enhancement in a Dimpled Diverging Microchannel with Al2O3-Water Nanofluid, J. Enhanced Heat Transf., vol. 25, nos. 4-5, pp. 347-365,2018.

  29. Qu, W. and Siu-Ho, A., Measurement and Prediction of Pressure Drop in a Two-Phase Micro-Pin-Fin Heat Sink, Int. J. Heat Mass Transf, vol. 52, no. 21, pp. 5173-5184, 2009.

  30. Sahar, A.M., Wissink, J., Mahmoud, M.M., Karayiannis, T.G., and Ishak, M.S.A., Effect of Hydraulic Diameter and Aspect Ratio on Single Phase Flow and Heat Transfer in a Rectangular Microchannel, Appl. Therm. Eng., vol. 115, pp. 793-814, 2017.

  31. Schmidt, J. and Friedel, L., Two-Phase Flow Pressure Drop across Sudden Contractions in Duct Areas, Int. J. Multiphase Flow, vol. 23, no. 2, pp. 283-299, 1997.

  32. Schmidt, J. and Friedel, L., Two-Phase Flow Pressure Change across Sudden Expansions in Duct Areas, Chem. Eng. Commun., vol. 141, no. 1, pp. 175-190, 1994.

  33. Sempertegui-Tapia, D.F. and Ribatski, G., Two-Phase Frictional Pressure Drop in Horizontal Micro-Scale Channels: Experimental Data Analysis and Prediction Method Development, Int. J. Refrig., vol. 79, pp. 143-163,2017.

  34. Sun, L.C. and Mishima, K., Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels, Int. J. Multiphase Flow, vol. 35, no. 1, pp. 47-54, 2008.

  35. Tiwari, N. and Manoj, K.M., Numerical Study of Thermal Enhancement in Modified Raccoon Microchannels, Heat Transf. Res., vol. 50, no. 6, pp. 519-543, 2019.

  36. Wadle, M.A., New Formula for the Pressure Recovery in an Abrupt Diffuser, Int. J. Multiphase Flow, vol. 15, no. 2, pp. 241-256,1989.

  37. Wambsganss, M.W., Jendrzejczyk, J.A., France, D.M., and Obot, N.T., Frictional Pressure Gradients in Two-Phase Flow in a Small Horizontal Rectangular Channel, Exp. Therm. Fluid Sci., vol. 5, no. 1, pp. 40-56, 1992.

  38. Wang, C.C., Tseng, C.Y., and Chen, I.Y., A New Correlation and the Review of Two-Phase Flow Pressure Change across Sudden Expansion in Small Channels, Int. J. Heat Mass Transf, vol. 53, no. 19, pp. 4287-4295,2010.

  39. Wei, L., Pan, L.M., Zhao, Y.M., Ren, Q.Y., and Zhang, W.Z., Numerical Study of Adiabatic Two-Phase Flow Patterns in Vertical Rectangular Narrow Channels, Appl. Therm. Eng., vol. 110, pp. 1101-1110, 2017.

  40. Wu, W., Xiao, B.Q., Hu, J., Yuan, S., and Hu, C.H., Experimental Investigation on the Air-Liquid Two-Phase Flow inside a Grooved Rotating-Disk System: Flow Pattern Maps, Appl. Therm. Eng., vol. 133, pp. 33-38,2018.

  41. Xiao, Y., Hu, Z.X., Chen, S., and Gu, H., Experimental Study of Two-Phase Frictional Pressure Drop of Steam-Water in Helically Coiled Tubes with Small Coil Diameters at High Pressure, Appl. Therm. Eng., vol. 132, pp. 18-29,2018.

  42. Zhai, Y.L., Xia, G.D., Li, Z.H., and Wang, H., Experimental Investigation and Empirical Correlations of Single and Laminar Convective Heat Transfer in Microchannel Heat Sinks, Exp. Therm. Fluid Sci., vol. 83, pp. 207-214, 2017.

  43. Zhang, W., Hibiki, T., and Mishima, K., Correlations of Two-Phase Frictional Pressure Drop and Void Fraction in Mini-Channel, Int. J. Heat Mass Transf., vol. 53, no. 1, pp. 453-465, 2009.

CITED BY
  1. Liu Dongxu, Liu Lei, Bai Dongfeng, Diao Yuling, Experimental study of loss coefficients for laminar oil-water two-phase flow through micro-scale flow restrictions, Experimental Thermal and Fluid Science, 140, 2023. Crossref

  2. Yang Guang, Zhang Wenchao, Binama Maxime, Sun Jianchuang, Cai Weihua, Review on bubble dynamic of subcooled flow boiling-part a: Research methodologies, International Journal of Thermal Sciences, 184, 2023. Crossref

Forthcoming Articles

Flow Boiling Heat Transfer in Microchannel Heat Exchangers with Micro Porous Coating Surface Kuan-Fu Sung, I-Chuan Chang, Chien-Yuh Yang Enhancement Evaluation Criteria for Pool Boiling Enhancement Structures in Electronics Cooling: CHF Enhancement Ratio (ER-CHF) and Enhancement Index (EI) Maharshi Shukla, Satish Kandlikar Influence of transient heat pulse on heat transfer performance of vapor chamber with different filling ratios Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin Effect of Geometrical Parameters on the Thermal-Hydraulic Performance of Internal Helically Ribbed Tubes Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials Wei Li In Memoriam of Professor Ralph L. Webb on the anniversary of his 90th birthday Wei Li Analysis of the Single-Blow Transient Testing Technique for Non-metallic Heat Exchangers Wentao Li, Kun Sun, Guoyan ZHOU, Xing Luo, Shan-Tung Tu, Stephan Kabelac, Ke Wang Evaluation of Heat Transfer Rate of Double-Layered Heat Sink Cooling System with High Energy Dissipation El Bachir Lahmer, Jaouad Benhamou, Youssef Admi, Mohammed Amine Moussaoui, Ahmed Mezrhab, Rakesh Kumar Phanden Experimental Investigation on Behavior of a Diesel Engine with Energy, Exergy, and Sustainability Analysis Using Titanium Oxide (Tio2) Blended Diesel and Biodiesel AMAN SINGH RAJPOOT, TUSHAR CHOUDHARY, ANOOP SHUKLA, H. CHELLADURAI, UPENDRA RAJAK, ABHINAV ANAND SINHA COLLISION MORPHOLOGIES OF SUPERCOOLED WATER DROPLETS ON SMALL LOW-TEMPERATURE SUPERHYDROPHOBIC SPHERICAL TARGETS Xin Liu, Yiqing Guo, Jingchun Min, Xuan ZHANG, Xiaomin Wu Pool boiling heat transfer characteristics of porous nickel microstructure surfaces Kun-Man Yao, Mou Xu, Shuo Yang, Xi-Zhe Huang, Dong-chuan MO, Shu-Shen Lyu Field experimental investigation of the insulation deterioration characteristics of overhead pipeline for steam heating network Junguang Lin, Jianfa Zhao, Xiaotian Wang, Kailun Chen, Liang Zhang A parametric and comparative study on bare-tube banks and new-cam-shaped tube banks for waste heat recovery applications Ngoctan Tran, Jane-Sunn Liaw, Chi-Chuan Wang
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain