Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Enhanced Heat Transfer
IF: 0.562 5-Year IF: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Print: 1065-5131
ISSN Online: 1026-5511

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2019031660
pages 429-449


Zhixiong Guo
Rutgers University


This article is a review of literature on heat transfer enhancement research published in 2018 in the English language. A topic search using "heat transfer" in the Web of Science resulted in about 17,000 articles published in 2018, of which nearly 4600 were relevant to heat transfer augmentation. Thus, some selection is inevitable. The included studies are grouped into the fields identified in the Aims and Scope of the Journal of Enhanced Heat Transfer, which considers a wide range of scholarly articles related to the subject of "enhanced heat and mass transfer" in natural and forced convection, phase-change heat transfer, conduction and radiative heat transfer, and the general topic of "high performance" heat transfer concepts, devices, or systems (e.g., heat exchangers and heat pipes).


  1. Abbood, S.A., Wang, J., Wu, Z., and Sunden, B., Analysis of Natural Convection of Cu and TiO2 Nanofluids inside Nonconventional Enclosures, J. Enhanc. Heat Transf., vol. 25, pp. 315-332,2018.

  2. Abdulateef, A.M., Mat, S., Abdulateef, J., Sopian, K., and Al-Abidi, A.A., Geometric and Design Parameters of Fins Employed for Enhancing Thermal Energy Storage Systems: A Review, Renew. Sustain. Energy Rev., vol. 82, pp. 1620-1635,2018a.

  3. Abdulateef, A.M., Mat, S., Abdulateef, J., Sopian, K., and Al-Abidi, A.A., Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique, Heat Transf. Eng., vol. 39, pp. 1067-1080,2018b.

  4. Aghakashi, V. and Saidi, M.H., Turbulent Decaying Swirling Flow in a Pipe, Heat Transf. Res., vol. 49, pp. 1559-1585,2018.

  5. Agrawal, A., Cho, S.H., Zandi, O., Ghosh, S., Johns, R.W., and Milliron, D.J., Localized Surface Plasmon Resonance in Semiconductor Nanocrystals, Chem. Rev, vol. 118, pp. 3121-3207,2018.

  6. Al-Asad, M.T., Alkasmoul, F.S., and Wilson, M.C.T., Benefits of Spanwise Gaps in Cylindrical Vortex Generators for Conjugate Heat Transfer Enhancement in Micro-Channels, Appl. Therm. Eng., vol. 130, pp. 571-586,2018.

  7. Ali, H.M., Ashraf, M.J., Giovannelli, A., Irfan, M., Binlrshad, T., Hamid, H.M., Hassan, F., and Arshad, A., Thermal Management of Electronics: An Experimental Analysis of Triangular, Rectangular and Circular Pin-Fin Heat Sinks for Various PCMs, Int. J. Heat Mass Transf., vol. 123, pp. 272-284,2018.

  8. Al-Neama, A.F., Kapur, N., Summers, J., and Thompson, H.M., Thermal Management of GaN HEMT Devices Using Serpentine Minichannel Heat Sinks, Appl. Therm. Eng., vol. 140, pp. 622-636,2018.

  9. Alrashed, A.A.A.A., Gharibdousti,M.S., Goodarzi, M., de Oliveira, L.R., Safaei, M.R., andBandarra, E.P., Effects on Thermophysical Properties of Carbon based Nanofluids: Experimental Data, Modelling Using Regression, ANFIS and ANN, Int. J. Heat Mass Transf., vol. 125, pp. 920-932,2018.

  10. Arkharov, I.A., Arkharov, A.M., Navasardyan, E.S., and Dontzov, A.V., Minimal Surfaces as Constant-Energy Surfaces for Maximum Heat and Mass Transfer Efficiency in Structured Packing of the Distillation Column, J. Enhanc. Heat Transf., vol. 25, pp. 143-159,2018a.

  11. Arkharov, I.A., Arkharov, A.M., Navasardyan, E.S., and Chekhovich, V.A., Modeling of Hydrodynamics in a Porous Structure of Low Temperature Regenerator Friction Factor at Low Reynolds' Numbers, J. Enhanc. Heat Transf., vol. 25, pp. 169-180,2018b.

  12. Arulprakasajothi, M., Elangovan, K., Chandrasekhar, U., and Suresh, S., Experimental Study of a Water-Based Titanium Oxide Nanofluid in a Circular Pipe with Transition Flow and Conical Strip Inserts, Heat Transf. Res, vol. 49, pp. 439-456,2018.

  13. Asadi, A., Asadi, M., Rezaniakolaei, A., Rosendahl, L.A., and Wongwises, S., An Experimental and Theoretical Investigation on Heat Transfer Capability of MG(OH)2/MWCNT-Engine Oil Hybrid Nano-Lubricant Adopted as a Coolant and Lubricant Fluid, Appl. Therm. Eng., vol. 129, pp. 577-586,2018.

  14. Ashorynejad, H.R. and Zarghami, A., Magnetohydrodynamics Flow and Heat Transfer of Cu-Water Nanofluid through a Partially Porous Wavy Channel, Int. J. Heat Mass Transf., vol. 119, pp. 247-258, 2018.

  15. Bahiraei, M., Rahmani, R., Yaghoobi, A., Khodabandeh, E., Mashayekhi, R., and Amani, M., Recent Research Contributions Concerning Use of Nanofluids in Heat Exchangers: A Critical Review, Appl. Therm. Eng., vol. 133, pp. 137-159,2018.

  16. Bait, O. and Si-Ameur, M., Enhanced Heat and Mass Transfer in Solar Stills Using Nanofluids: A Review, Sol. Energy, vol. 170, pp. 694-722,2018.

  17. Balaji, D., Velraj, R., and Murthy, M.V.R., A Review of the Role of Passive Techniques on Heat Transfer Enhancement of Horizontal Tube Falling Film and Flooded Evaporators, J. Enhanc. Heat Transf., vol. 25, pp. 239-282,2018.

  18. Bellos, E. and Tzivanidis, C., Enhancing the Performance of Evacuated and Non-Evacuated Parabolic trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber, Energies, vol. 11, p. 1129,2018.

  19. Bergles, A.E., Nirmalan, V., Junkhan, G.H., and Webb, R.L., Bibliography on Augmentation of Convective Heat and Mass Transfer-II, Iowa State University, Ames, IA, 1983.

  20. Bergles, A.E. and Manglik, R.M., Current Progress and New Development in Enhanced Heat and Mass Transfer, J. Enhanc. Heat Transf., vol. 20, pp. 1-15,2013.

  21. Bhanvase, B.A., Sayankar, S.D., Kapre, A., Fule, P.J., and Sonawane, S.H., Experimental Investigation on Intensified Convective Heat Transfer Coefficient of Water based PANI Nanofluid in Vertical Helical Coiled Heat Exchanger, Appl. Therm. Eng., vol. 128, pp. 134-140,2018.

  22. Bianco, V., Marchitto, A., Scarpa, F., and Tagliafico, L.A., Computational Fluid Dynamics Modeling of Developing Forced Laminar Convection Flow of Al2O3-Water Nanofluid in a Two-Dimensional Rectangular Section Channel, J. Enhanc. Heat Transf., vol. 25, pp. 387-398,2018.

  23. Biehs, S.A. and Ben-Abdallah, P., Fluctuations of Radiative Heat Exchange between Two Bodies, Phys. Rev. B, vol. 97,201406,2018.

  24. Burkov, I.A., Zherdev, A.A., Pushkarev, A.V., Tsiganov, D.I., and Shakurov, A.V., Simulation of Fluid Hypothermia for Robot-Assisted Prostatectomy, J. Enhanc. Heat Transf, vol. 25, pp. 121-136,2018.

  25. Cai, Y.M. and Guo, Z., Spectral Monte Carlo Simulation of Collimated Solar Irradiation Transfer in a Water-Filled Prismatic Louver, Appl. Opt, vol. 57, pp. 3021-3030,2018.

  26. Cao, X.L., Yuan, Y.P., Xiang, B., Sun, L.L., and Zhang, X.X., Numerical Investigation on Optimal Number of Longitudinal Fins in Horizontal Annular Phase Change Unit at Different Wall Temperatures, Energy Build., vol. 158, pp. 384-392,2018.

  27. Carletti, C., Bikic, S., Montante, G., and Paglianti, A., Mass Transfer in Dilute Solid-Liquid Stirred Tanks, Ind. Eng. Chem. Res., vol. 57, pp. 6505-6515,2018.

  28. Chai, L. and Wang, L., Thermal-Hydraulic Performance of Interrupted Microchannel Heat Sinks with Different Rib Geometries in Transverse Microchambers, Int. J. Therm. Sci., vol. 127, pp. 201-212,2018.

  29. Chamoli, S., Lu, R.X., Xie, J., and Yu, P., Numerical Study on Flow Structure and Heat Transfer in a Circular Tube Integrated with Novel Anchor Shaped Inserts, Appl. Therm. Eng., vol. 135, pp. 304-324, 2018.

  30. Chang, S.W., Liou, T.M., Yu, K.C., and Huang, S.S., Thermal-Hydraulic Performance of Longitudinal Wavy Rib along Wavy Two-Pass Channel, Appl. Therm. Eng., vol. 133, pp. 224-236,2018.

  31. Chen, J.N., Xu, R.N., Zhang, Z., Chen, X., Ouyang, X.L., Wang, G.Y, and Jiang, P.X., Phenomenon and Mechanism of Spray Cooling on Nanowire Arrayed and Hybrid Micro/Nanostructured Surfaces, J. Heat Transf, vol. 140,112401,2018a.

  32. Chen, J., Zhao, C.Y., and Wang, B.X., Near-Field Thermal Radiative Transfer in Assembled Spherical Systems Composed of Core-Shell Nanoparticles, J. Quant. Spectro. Rad. Transf., vol. 219,pp. 304-312, 2018b.

  33. Chimres, N., Wang, C.C., and Wongwises, S., Optimal Design of the Semi-Dimple Vortex Generator in the Fin and Tube Heat Exchanger, Int. J. Heat Mass Transf, vol. 120, pp. 1173-1186,2018.

  34. Chu, K., Wang, X.H., Wang, F., Li, Y.B., Huang, D.J., Liu, H., Ma, W.L., Liu, F.X., and Zhang, H., Largely Enhanced Thermal Conductivity of Graphene/Copper Composites with Highly Aligned Graphene Network, Carbon, vol. 127, pp. 102-112,2018.

  35. Cui, X.Y., Guo, J.F., Huai, X.L., Cheng, K.Y., Zhang, H.Y., and Xiang, M.R., Numerical Study on Novel Airfoil Fins for Printed Circuit Heat Exchanger Using Supercritical CO2, Int. J. Heat Mass Transf., vol. 121, pp. 354-366,2018.

  36. da Silva, B.N.M., Assad, G.E., and de Lima, J.A., Unsteady Magnetohydrodynamic Channel Flow with Hall and Ion-Slip Effects: The Integral Transform Solution Procedure, J. Enhanc. Heat Transf., vol. 25, pp. 367-386,2018.

  37. de Lemos, M.J.S. and Carvalho, P.H.S., The Effects of Porosity and Mass-to-Thermal Drive Ratio on Aiding and Opposing Convection in Porous Enclosures, J. Enhanc. Heat Transf., vol. 25, pp. 399-419, 2018.

  38. Didari, A., Elcioglu, E.B., Okutucu-Ozyurt, T., and Menguc, M.P., Near-Field Radiative Transfer in Spectrally Tunable Double-Layer Phonon-Polaritonic Metamaterials, J. Quant. Spectro. Rad. Transf., vol. 212, pp. 120-127,2018.

  39. Dugaria, S., Bortolato, M., and Col, D.D., Modelling of a Direct Absorption Solar Receiver Using Carbon based Nanofluids under Concentrated Solar Radiation, Renew. Energy, vol. 128, pp. 495-508,2018.

  40. Elsheikh, A.H., Sharshir, S.W., Mostafa, M.E., Essa, F.A., and Ali, M.K.A., Applications of Nanofluids in Solar Energy: A Review of Recent Advances, Renew. Sustain. EnergyRev., vol. 82, pp. 3483-3502, 2018.

  41. Elzouka, M. and Ndao, S., Meshed Doped Silicon Photonic Crystals for Manipulating Near-Field Thermal Radiation, J. Quant. Spectro. Rad. Transf, vol. 204, pp. 56-62,2018.

  42. Fiorino, A., Zhu, L.X., Thompson, D., Mittapally, R., Reddy, P., and Meyhofer, E., Nanogap Near-Field Thermophovoltaics, Nature Nanotech., vol. 13, pp. 806-811,2018.

  43. Ganesan, U.K., Soni, K., Sivan, S., Ghosh, K., Thansekhar, M.R., and Babu, P.D., Modified Surfaces Using Seamless Graphene/Carbon Nanotubes based Nanostructures for Enhancing Pool Boiling Heat Transfer, Exp. Therm. FluidSci., vol. 96, pp. 493-506,2018.

  44. Gao, Y., Wang, H., Sun, M., Ding, Y., Zhang, L., and Li, Q.F., First-Principles Study of Intrinsic Phononic Thermal Transport in Monolayer C3N, Physica E, vol. 99, pp. 194-201,2018.

  45. Garcia, A., Herrero-Martin, R., Solano, J.P., and Perez-Garcia, J., The Role of Insert Devices on Enhancing Heat Transfer in a Flat-Plate Solar Water Collector, Appl. Therm. Eng., vol. 132, pp. 479-489, 2018.

  46. Guillemet, T., Heintz, H.M., Mortaigne, B., Lu, Y.F., and Silvain, J.F., Formation of Cu Nanodots on Diamond Surface to Improve Heat Transfer in Cu/D Composites, Adv. Eng. Mater., vol. 20,1700894,2018.

  47. Gupta, S.K. and Misra, R.D., An Experimental Investigation on Flow Boiling Heat Transfer Enhancement Using Cu-TiO2 Nanocomposite Coating on Copper Substrate, Exp. Therm. Fluid Sci., vol. 98, pp. 406-419,2018.

  48. Han, H.Z., Yang, L.B., Chen, X., and Li, B.X., Numerical and Experimental Study of Flow and Heat Transfer in Outwardly Convex Corrugated Tubes with a Twisted Tape Insert, Heat Transf. Res., vol. 49, pp. 1605-1628,2018.

  49. Hassanpour, M., Vaferi, B., and Masoumi, M.E., Estimation of Pool Boiling Heat Transfer Coefficient of Alumina Water-Based Nanofluids by Various Artificial Intelligence (AI) Approaches, Appl. Therm. Eng., vol. 128, pp. 1208-1222,2018.

  50. He, C.X. and Liu, Y.Z., Jet Impingement Heat Transfer of a Lobed Nozzle: Measurements Using Temperature-Sensitive Paint and Particle Image Velocimetry, Int. J. Heat Fluid Flow, vol. 71, pp. 111.

  51. Heydari, A., Akbari, O.A., Safaei, M.R., Derakhshani, M., Alrashed, A., Mashayekhi, R., Shabani, G., Zarringhalam, M., and Nguyen, T.K., The Effect of Attack Angle of Triangular Ribs on Heat Transfer of Nanofluids in a Microchannel, J. Therm. Anal. Calorim., vol. 131, pp. 2893-2912, 2018.

  52. Hosseinian, A., Isfahani, A.H.M., and Shirani, E., Experimental Investigation of Surface Vibration Effects on Increasing the Stability and Heat Transfer Coefficient of MWCNTs-Water Nanofluid in a Flexible Double Pipe Heat Exchanger, Exp. Therm. Fluid Sci., vol. 90, pp. 275-285, 2018.

  53. Hosseinnezhad, R., Akbari, O.A., Afrouzi, H.H., Biglarian, M., Koveiti, A., and Toghraie, D., Numerical Study of Turbulent Nanofluid Heat Transfer in a Tubular Heat Exchanger with Twin Twisted-Tape Inserts, J. Therm. Anal. Calorim, vol. 132, pp. 741-759,2018.

  54. Hotta, T.K., Harsha, P.S., and Venkateshan, S.P., Experimental Investigation of Mixed Convection and Surface Radiation Heat Transfer from Protruding Discrete Heat Sources Mounted on a Vertical Channel, Heat Transf. Res, vol. 49, pp. 965-977,2018.

  55. Hu, H.T., Yang, G.C., Ding, G.L., Chen, J., Yang, W.G., and Hu, S.Y., Heat Transfer Characteristics of Mixed Hydrocarbon Refrigerant Flow Condensation in Shell Side of Helically Baffled Shell-and-Tube Heat Exchanger, Appl. Therm. Eng., vol. 133, pp. 785-796,2018.

  56. Huang, K. and Deng, X.H., Enhanced Heat and Mass Transfer of Falling Liquid Films in Vertical Tubes, J. Enhanc. Heat Transf., vol. 25, pp. 79-96,2018.

  57. Iasiello, M., Cunsolo, S., Bianco, N., Chiu, W.K.S., andNaso, V., Fully Developed Convection Heat Transfer in Open-Cell Foams, J. Enhanc. Heat Transf., vol. 25, pp. 333-346,2018.

  58. Isaev, S., Leontiev, A., Chudnovsky, Y., and Popov, I., Vortex Heat Transfer Enhancement in Narrow Channels with a Single Oval-Trench Dimple Oriented at Different Angles to the Flow, J. Enhanc. Heat Transf., vol. 25, pp. 579-604,2018.

  59. Ji, C.Z., Qin, Z.H., Low, Z., Dubey, S., Choo, F.H., and Duan, F., Non-Uniform Heat Transfer Suppression to Enhance PCM Melting by Angled Fins, Appl. Therm. Eng., vol. 129, pp. 269-279,2018.

  60. Kamkari, B. and Groulx, D., Experimental Investigation of Melting Behaviour of Phase Change Material in Finned Rectangular Enclosures under Different Inclination Angles, Exp. Therm. Fluid Sci., vol. 97, pp. 94-108,2018.

  61. Kashyap, U., Das, K., and Debnath, B.K., Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate from a Surface to Fluid, Int. J. Therm. Sci., vol. 127, pp. 61-78,2018.

  62. Keklikcioglu, O., and Ozceyhan, V., Experimental Investigation on Heat Transfer Enhancement in a Circular Tube with Equilateral Triangle Cross Sectioned Coiled-Wire Inserts, Appl. Therm. Eng., vol. 131, pp. 686-695,2018.

  63. Khoshvaght-Aliabadi, M., Khaligh, S.F., and Tavassoli, Z., An Investigation of Heat Transfer in Heat Exchange Devices with Spirally-Coiled Twisted-Ducts Using Nanofluid, Appl. Therm. Eng., vol. 143, pp. 358-375,2018.

  64. Kieu, H.T., Liu, B., Zhang, H., Zhou, K., and Law, W.K., Molecular Dynamics Study of Water Evaporation Enhancement through a Capillary Graphene Bilayer with Tunable Hydrophilicity, Appl. Surf. Sci., vol. 452, pp. 372-380,2018.

  65. Kim, J.M., Park, S.C., Kong, B., Lee, H.B.R., and Ahn, H.S., Effect of Porous Graphene Networks and Micropillar Arrays on Boiling Heat Transfer Performance, Exp. Therm. Fluid Sci., vol. 93, pp. 153-164, 2018.

  66. Krishna, P.M.M., Deepu, M., and Shine, S.R., Numerical Investigation of Wavy Microchannels with Rectangular Cross Section, J. Enhanc. Heat Transf., vol. 25, pp. 293-313,2018.

  67. Kumar, R. and Chand, P., Performance Prediction of Extended Surface Absorber Solar Air Collector with Twisted Tape Inserts, Sol. Energy, vol. 169, pp. 40-48,2018.

  68. Kumar, C.S. and Pattamatta, A., Assessment of Heat Transfer Enhancement Using Metallic Porous Foam Configurations in Laminar Slot Jet Impingement: An Experimental Study, J. Heat Transf., vol. 140, 022202,2018.

  69. Kumar, N., Bhramara, P., Kirubeil, A., Sundar, L.S., Singh, M.K., and Sousa, A., Effect of Twisted Tape Inserts on Heat Transfer, Friction Factor of Fe3 O4 Nanofluids Flow in a Double Pipe U-Bend Heat Exchanger, Int. Commun. Heat Mass Transf., vol. 95, pp. 55-62,2018a.

  70. Kumar, N., Raza, Q., and Raj, R., Surfactant Aided Bubble Departure during Pool Boiling, Int. J. Therm. Sci., vol. 131, pp. 105-113,2018b.

  71. Kumar, B., Srivastava, G.P., Kumar, M., and Patil, A.K., A Review of Heat Transfer and Fluid Flow Mechanism in Heat Exchanger Tube with Inserts, Chem. Eng. Process, vol. 123, pp. 126-137, 2018c.

  72. Kuzenov, V.V. and Ryzhkov, S.V., Approximate Calculation of Convective Heat Transfer near Hypersonic Aircraft Surface, J. Enhanc. Heat Transf, vol. 25, pp. 181-193,2018.

  73. Kuzma-Kichta, Y. and Leontiev, A., Choice and Justification of the Heat Transfer Intensification Methods, J. Enhanc. Heat Transf, vol. 25, pp. 465-564,2018.

  74. Li, T., Tang, Z.N., Huang, Z.X., and Yu, J., Substrate Effects on the Thermal Performance of In-Plane Graphene/Hexagonal Boron Nitride Heterostructures, Carbon, vol. 130, pp. 396-400,2018a.

  75. Li, N., Wu, L., Yu, C.L., Dai, H.Y., Wang, T., Dong, Z.C., and Jiang, L., Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation, Adv. Mater., vol. 30, 1703838, 2018b.

  76. Li, Z., Xu, X.C., Li, K.J., Chen, Y.Y., Ke, Z.Q., Wang, S., Chen, H.H., Huang, G.L., Chen, C.L., and Chen, C.H., Bio-Inspired Self-Agitator for Convective Heat Transfer Enhancement, Appl. Phys. Lett., vol. 113, 113703,2018c.

  77. Li, W., Khan, T.A., Tang, W. Y., and Minkowycz, W.J., Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger, J. Heat Transf, vol. 140,111801,2018d.

  78. Li, Z., Miao, N.H., Zhou, J., Sun, Z.M., Liu, Z.K., and Xu, H.B., High Thermoelectric Performance of Few-Quintuple Sb2Te3 Nanofilms, Nano Energy, vol. 43, pp. 285-290,2018e.

  79. Liu, Y.X., Liu, Z.Y., Wang, Y., Yin, Y.S., Pan, J., Zhang, J., and Wang, Q., Simultaneous Absorption of SO2 and NO from Flue Gas Using Ultrasound/Fe2+/Heat Coactivated Persulfate System, J. Hazardous Mater., vol. 342, pp. 326-334,2018a.

  80. Liu, J., Hussain, S., Wang, J.S., Wang, L., Xie, G.N., and Sunden, B., Heat Transfer Enhancement and Turbulent Flow in a High Aspect Ratio Channel (4:1) with Ribs of Various Truncation Types and Arrangements, Int. J. Therm.. Sci., vol. 123, pp. 99-116,2018b.

  81. Liu, Y.H., Zeng, J., Han, D., Wu, K., Yu, B.W., Chai, S.G., Chen, F., and Fu, Q., Graphene Enhanced Flexible Expanded Graphite Film with High Electric, Thermal Conductivities and EMI Shielding at Low Content, Carbon, vol. 133, pp. 435-445,2018c.

  82. Lu, Z.X., Wang, Y., and Ruan, X.L., The Critical Particle Size for Enhancing Thermal Conductivity in Metal Nanoparticle-Polymer Composites, J. Appl. Phys, vol. 123, 074302,2018.

  83. Luo, L., Yan, H., Yang, S.Y., Du, W., Wang, S.T., Sunden, B., and Zhang, X.H., Convergence Angle and Dimple Shape Effects on the Heat Transfer Characteristics in a Rotating Dimple-Pin Fin Wedge Duct, Numer. Heat Transf. A, vol. 74, pp. 1611-1635,2018.

  84. Ma, D.K., Wan, X., and Yang, N., Unexpected Thermal Conductivity Enhancement in Pillared Graphene Nanoribbon with Isotopic Resonance, Phys. Rev. B, vol. 98,245420,2018a.

  85. Ma, Y.L., Zhang, Z.W., Chen, J.G., Saaskilahti, K., Volz, S., and Chen, J., Ordered Water Layers by Interfacial Charge Decoration Leading to an Ultra-Low Kapitza Resistance between Graphene and Water, Carbon, vol. 135, pp. 263-269,2018b.

  86. Mahbubul, I.M., Khan, M.M.A., Ibrahim, N.I., Ali, H.M., Al-Sulaiman, F.A., and Saidur, R., CarbonNanotube Nanofluid in Enhancing the Efficiency of Evacuated Tube Solar Collector, Renew. Energy, vol. 121, pp. 36-44,2018.

  87. Mahdi, J.M. and Nsofor, E.C., Solidification Enhancement of PCM in a Triplex-Tube Thermal Energy Storage System with Nanoparticles and Fins, Appl. Energy, vol. 211, pp. 975-986,2018.

  88. Meyer, J.P. and Abolarin, S.M., Heat Transfer and Pressure Drop in the Transitional Flow Regime for a Smooth Circular Tube with Twisted Tape Inserts and a Square-Edged Inlet, Int. J. Heat Mass Transf., vol. 117, pp. 11-29,2018.

  89. Ming, T.Z., Cai, C.J., Yang, W., Shen, W.Q., and Gan, T., Optimization of Dimples in Microchannel Heat Sink with Impinging Jets-Part A: Mathematical Model and the Influence of Dimple Radius, J. Therm. Sci., vol. 27, pp. 195-202,2018.

  90. Modak, M., Chougule, S.S., and Sahu, S.K., An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO-Water Nanofluids in Circular Jet Impingement Cooling, J. Heat Transf., vol. 140, 012401,2018a.

  91. Modak, M., Sharma, A.K., and Sahu, S.K., An Experimental Investigation on Heat Transfer Enhancement in Circular Jet Impingement on Hot Surfaces by Using Al2O3/Water Nano-Fluids and Aqueous High-Alcohol Surfactant Solution, Exp. Heat Transf., vol. 31, pp. 275-296,2018b.

  92. Mohebbi, R., Rashidi, M.M., Izadi, M., Sidik, N.A.C., and Xian, H.W., Forced Convection of Nanofluids in an Extended Surfaces Channel Using Lattice Boltzmann Method, Int. J. Heat Mass Transf., vol. 117, pp. 1291-1303,2018.

  93. Nadda, R., Kumar, A., Maithani, R., and Kumar, R., Investigation of Thermal and Hydrodynamic Performance of Impingement Jets Solar Air Passage with Protrusion with Combination Arc Obstacle on the Heated Plate, Exp. Heat Transf., vol. 31, pp. 232-250,2018.

  94. Naik, H. and Tiwari, S., Effect of Aspect Ratio and Arrangement of Surface-Mounted Circular Cylinders on Heat Transfer Characteristics, J. Enhanc. Heat Transf., vol. 25, pp. 443-463, 2018.

  95. Naik, B.A.K. and Vinod, A.V., Heat Transfer Enhancement Using Non-Newtonian Nanofluids in a Shell and Helical Coil Heat Exchanger, Exp. Therm. Fluid Sci., vol. 90, pp. 132-142,2018.

  96. Namsani, S. and Singh, J.K., Enhancement of Thermal Energy Transport across the Gold-Graphene Interface Using Nanoscale Defects: A Molecular Dynamics Study, J. Phys. Chem. C, vol. 122, pp. 2113-2121,2018.

  97. Nandakrishnan, S.L., Deepu, M., and Shine, S.R., Numerical Investigation of Heat-Transfer Enhancement in a Dimpled Diverging Microchannel with Al2O3-Water Nanofluid, J. Enhanc. Heat Transf., vol. 25, pp. 347-365,2018.

  98. Naphon, P. and Wiriyasart, S., Experimental Study on Laminar Pulsating Flow and Heat Transfer of Nanofluids in Micro-Fins Tube with Magnetic Fields, Int. J. Heat Mass Transf., vol. 118, pp. 297-303, 2018.

  99. Nasersharifi, Y., Kaviany, M., and Hwang, G., Pool-Boiling Enhancement Using Multilevel Modulated Wick, Appl. Therm. Eng., vol. 137, pp. 268-276,2018.

  100. Nazari, M.A., Ahmadi, M.H., Ghasempour, R., Shafii, M.B., Mahian, O., Kalogirou, S., and Wongwises, S., A Review on Pulsating Heat Pipes: From Solar to Cryogenic Applications, Appl. Energy, vol. 222, pp. 475-484,2018a.

  101. Nazari, M.A., Ghasempour, R., Ahmadi, M.H., Heydarian, G., and Shafii, M.B., Experimental Investigation of Graphene Oxide Nanofluid on Heat Transfer Enhancement of Pulsating Heat Pipe, Int. Commun. Heat Mass Transf., vol. 91, pp. 90-94,2018b.

  102. Niu, X.J., Yuan, H.J., Quan, C., and Zhao, L., Dryout Quality Prediction for Boiling Two-Phase Flow in Vertical Helically Coiled Tubes, Appl. Therm. Eng., vol. 128, pp. 982-992,2018.

  103. Nobakht, A.Y., Gandomi, Y.A., Wang, J.Q., Bowman, M.H., Marable, D.C., Garrison, B.E, Kim, D., and Shin, S., Thermal Rectification via Asymmetric Structural Defects in Graphene, Carbon, vol. 132, pp. 565-572,2018.

  104. Oktent, K. and Biyikoglu, A., Effect of Air Bubble Injection on the Overall Heat Transfer Coefficient, J. Enhanc. Heat Transf., vol. 25, pp. 195-210,2018.

  105. Oneissi, M., Habchi, C., Russeil, S., Lemenand, T., and Bougeard, D., Heat Transfer Enhancement of Inclined Projected Winglet Pair Vortex Generators with Protrusions, Int. J. Therm. Sci., vol. 134, pp. 541-551,2018.

  106. Osorio, M., Moreno, F.L., Raventos, M., Hernandez, E., and Ruiz, Y., Progressive Stirred Freeze-Concentration of Ethanol-Water Solutions, J. Food Eng., vol. 224, pp. 71-79,2018.

  107. Pal, S.K. and Bhattacharyya, S., Enhanced Heat Transfer of Cu-Water Nanofluid in a Channel with Wall Mounted Blunt Ribs, J. Enhanc. Heat Transf., vol. 25, pp. 61-78,2018.

  108. Park, M., Yoon, H., Kim, J., Lee, J., Lee, S.E., Yoo, S., and Jeon, S., Efficient Solid-State Photolumines-cence of Graphene Quantum Dots Embedded in Boron Oxynitride for AC-Electroluminescent Device, Adv. Mater., vol. 30,18029951,2018.

  109. Perao, L.H., Zdanski, P.S.B., and Vaz, M., Conjugate Heat Transfer in Channels with Heat-Conducting Inclined Fins, Numer. Heat Transf. A, vol. 73, pp. 75-93,2018.

  110. Qiu, L., Zhu, N., Zou, H.Y., Feng, YH., Zhang, X.X., and Tang, D.W., Advances in Thermal Transport Properties at Nanoscale in China, Int. J. Heat Mass Transf., vol. 125, pp. 413-433,2018.

  111. Quan, X.J., Chen, S., Li, J.J., and Cheng, P., Enhanced Dropwise Condensation by Oil Infused Nano-Grass Coatings on Outer Surface of a Horizontal Copper Tube, Int. Commun. Heat Mass Transf., vol. 91, pp. 11-16,2018.

  112. Qureshi, Z.A., Ali, H.M., and Khushnood, S., Recent Advances on Thermal Conductivity Enhancement of Phase Change Materials for Energy Storage System: A Review, Int. J. Heat Mass Transf., vol. 127, pp. 838-856,2018.

  113. Rao, Y., Jet Impingement Heat Transfer in Narrow Channels with Different Pin Fin Configurations on Target Surfaces, J. Heat Transf., vol. 140, 072201,2018.

  114. Rashidi, S., Mahian, O., and Languri, E.M., Applications of Nanofluids in Condensing and Evaporating Systems: A Review, J. Therm. Anal. Calorim, vol. 131, pp. 2027-2039,2018a.

  115. Rashidi, S., Rahbar, N., Valipour, M.S., andEsfahani, J.A., Enhancement of Solar Still by Reticular Porous Media: Experimental Investigation with Exergy and Economic Analysis, Appl. Therm. Eng., vol. 130, pp. 1341-1348,2018b.

  116. Rashidi, S., Kashefi, M.H., and Hormozi, F., Potential Applications of Inserts in Solar Thermal Energy Systems - A Review to Identify the Gaps and Frontier Challenges, Sol. Energy, vol. 171, pp. 929-952, 2018c.

  117. Samadifar, M. and Toghraie, D., Numerical Simulation of Heat Transfer Enhancement in a Plate-Fin Heat Exchanger Using a New Type of Vortex Generators, Appl. Therm. Eng., vol. 133, pp. 671-681,2018.

  118. Samokhvalov, Y., Kolesnikov, A., Krotov, A., Parkin, A., Navasardyan, E., and Arkharov, I., Heat Transfer in the Structure of a Spiral-Wound Heat Exchanger for Liquefied Natural Gas Production: Review of Numerical Models for the Heat-Transfer Coefficient of Condensation for a Hydrocarbon Mixture in a Horizontal Tube, J. Enhanc. Heat Transf., vol. 25, pp. 109-120,2018.

  119. Sandhu, H., Gangacharyulu, D., and Singh, M.K., Experimental Investigations on the Cooling Performance of Microchannels Using Alumina Nanofluids with Different Base Fluids, J. Enhanc. Heat Transf., vol. 25, pp. 283-291,2018.

  120. Sarafraz, M.M., Nikkhah, V., Nakhjavani, M., and Arya, A., Thermal Performance of a Heat Sink Microchannel Working with Biologically Produced Silver-Water Nanofluid: Experimental Assessment, Exp. Therm. Fluid Sci., vol. 91, pp. 509-519,2018.

  121. Selimefendigil, F., Pulsating Hybrid Nanofluids Double Slot Jets Impingement onto an Isothermal Wall, Heat Transf. Res, vol. 49, pp. 173-188,2018.

  122. Settar, A., Abboudi, S., and Lebaal, N., Effect of Inert Metal Foam Matrices on Hydrogen Production Intensification of Methane Steam Reforming Process in Wall-Coated Reformer, Int. J. Hydrogen Energy, vol. 43, pp. 12386-12397,2018.

  123. Sharif, M.Z., Azmi, W.H., Mamat, R., and Shaiful, A., Mechanism for Improvement in Refrigeration System Performance by Using Nanorefrigerants and Nanolubricants-A Review, Int. Commun. Heat Mass Transf, vol. 92, pp. 56-63,2018.

  124. Sharma, C.S., Stamatopoulos, C., Suter, R., von Rohr, P.R., and Poulikakos, D., Rationally 3D-Textured Copper Surfaces for Laplace Pressure, Imbalance-Induced Enhancement in Dropwise Condensation, ACS Appl. Mater. Inter, vol. 10, pp. 29127-29135,2018.

  125. Sheikholeslami, M., Shehzad, S.A., Li, Z.X., and Shafee, A., Numerical Modeling for Alumina Nanofluid Magnetohydrodynamic Convective Heat Transfer in a Permeable Medium Using Darcy Law, Int. J. Heat Mass Transf, vol. 127, pp. 614-622,2018a.

  126. Sheikholeslami, M., Li, Z.X., and Shafee, A., Lorentz Forces Effect on NEPCM Heat Transfer during So-lidification in a Porous Energy Storage System, Int. J. Heat Mass Transf., vol. 127, pp. 665-674,2018b.

  127. Sheikholeslami, M., Jafaryar, M., Saleem, S., Li, Z.X., Shafee, A., and Jiang, Y., Nanofluid Heat Transfer Augmentation and Exergy Loss inside a Pipe Equipped with Innovative Turbulators, Int. J. Heat Mass Transf, vol. 126, pp. 156-163,2018c.

  128. Shin, D.H., Baek, S.H., and Ko, H.S., Analysis of Counter Flow of Corona Wind for Heat Transfer Enhancement, Heat Mass Transf., vol. 54, pp. 841-854,2018.

  129. Siavashi, M., Bahrami, H., and Aminian, E., Optimization of Heat Transfer Enhancement and Pumping Power of a Heat Exchanger Tube Using Nanofluid with Gradient and Multi-Layered Porous Foams, Appl. Therm. Eng., vol. 138, pp. 465-474,2018.

  130. Singh, I. and Singh, S., CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements, Sol. Energy, vol. 162, pp. 442-453,2018.

  131. Skullong, S., Promthaisong, P., Promvonge, P., Thianpong, C., and Pimsarn, M., Thermal Performance in Solar Air Heater with Perforated-Winglet-Type Vortex Generator, Sol. Energy, vol. 170, pp. 1101-1117, 2018.

  132. Sobhani, M. and Behzadmehr, A., Investigation of Thermo-Fluid Behavior of Mixed Convection Heat Transfer of Different Dimples-Protrusions Wall Patterns to Heat Transfer Enhancement, Heat Mass Transf, vol. 54, pp. 3219-3229,2018.

  133. Sozen, A., Ciftci, E., Kecel, S., Guru, M., Variyenli, H.I., and Karakaya, U., Usage of a Diatomite- Containing Nanofluid as the Working Fluid in a Wickless Loop Heat Pipe: Experimental and Numerical Study, Heat Transf. Res, vol. 49, pp. 1721-1744,2018.

  134. Sunakraneni, S., Puliyeri, V., and Prakash, K.A., Fluid Flow and Heat Transfer Characteristics past Two Tandem Elliptic Cylinders: A Numerical Study, J. Enhanc. Heat Transf., vol. 25, pp. 421-441,2018.

  135. Sur, A., Lu, Y., Pascente, C., Ruchhoeft, P., and Liu, D., Pool Boiling Heat Transfer Enhancement with Electrowetting, Int. J. Heat Mass Transf., vol. 120, pp. 202-217,2018.

  136. Suri, A.R.S., Kumar, A., and Maithani, R., Experimental Determination of Enhancement of Heat Transfer in a Multiple Square Perforated Twisted Tape Inserts Heat Exchanger Tube, Exp. Heat Transf., vol. 31, pp. 85-105,2018.

  137. Surtaev, A., Kuznetsov, D., Serdyukov, V., Pavlenko, A., Kalita, V., Komlev, D., Ivannikov, A., and Radyuk, A., Structured Capillary-Porous Coatings for Enhancement of Heat Transfer at Pool Boiling, Appl. Therm. Eng., vol. 133, pp. 532-542,2018.

  138. Tabassum, T., Hasan, M., and Begum, L., Thermal Energy Storage through Melting of a Commercial Phase-Change Material in a Horizontal Cylindrical Annulus, J. Enhanc. Heat Transf., vol. 25, pp. 211-237,2018.

  139. Terekhov, V.I., Khafaji, H.Q., and Gorbachev, M.V., Heat and Mass Transfer Enhancement in Laminar Forced Convection Wet Channel Flows with Uniform Wall Heat Flux, J. Enhanc. Heat Transf., vol. 25, pp. 565-577,2018.

  140. Tharayil, T., Asirvatham, L.G., Rajesh, S., and Wongwises, S., Effect of Nanoparticle Coating on the Performance of a Miniature Loop Heat Pipe for Electronics Cooling Applications, J. Heat Transf., vol. 140, 022401,2018.

  141. Wang, H., Wang, S.K., Lu, W.B., Li, M., Gu, Y.Z., Zhang, Y.Y., and Zhang, Z.G., Through-Thickness Thermal Conductivity Enhancement of Graphite Film/Epoxy Composite via Short Duration Acidizing Modification, Appl. Surf. Sci., vol. 442, pp. 170-177,2018a.

  142. Wang, J.X., Li, Y.Z., Li, J.X., Li, C., Xiong, K., and Ning, X.W., Enhanced Heat Transfer by an Original Immersed Spray Cooling System Integrated with an Ejector, Energy, vol. 158, pp. 512-523,2018b.

  143. Wang, Y.M., Li, X.Q., and Guo, Z., Prediction of Self-Ignition Fire Propagation and Coal Loss in an Inclined Seam, Heat Transf. Res., vol. 49, pp. 827-845,2018c.

  144. Wang, J.L., Wu, Z.Z., Mao, C.K., Zhao, Y.F., Yang, J.K., and Chen, Y.F., Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires, Sci. Rep., vol. 8, p. 4862,2018d.

  145. Webb, R.L., Compact Heat Exchangers, J. Enhanc. Heat Transf., vol. 25, pp. 1-59,2018.

  146. Wen, R.F., Xu, S.S., Lee, Y.C., and Yang, R.G., Capillary-Driven Liquid Film Boiling Heat Transfer on Hybrid Mesh Wicking Structures, NanoEnergy, vol. 51,pp. 373-382,2018.

  147. Xie, Y. S . , Wang, T. Y. , Zhu, B . W. , Yan, C . Y. , Zhang, P.X . , Wang, X .W. , and Eres, G. , 19-Fold Thermal Conductivity Increase of Carbon Nanotube Bundles toward High-End Thermal Design Applications, Carbon, vol. 139, pp. 445-458,2018.

  148. Xu, X.F., Chen, J., Zhou, J., and Li, B.W., Thermal Conductivity of Polymers and Their Nanocomposites, Adv. Mater., vol. 30,1705544,2018a.

  149. Xu, X.X., Zhang, Y.D., Liu, C., Zhang, S.J., and Dang, C.B., Experimental Investigation of Heat Transfer of Supercritical CO2 Cooled in Helically Coiled Tubes based on Exergy Analysis, Int. J. Refrigeration, vol. 89, pp. 177-185,2018b.

  150. Xue, Y.X., Chen, Y., Cai, K., Liu, Z.Y., Zhang, Y.Y., and Wei, N., Local Strain Field Engineering on Interfacial Thermal Resistance of Graphene Nanoribbon, Appl. Phys. Lett., vol. 112, 021604,2018a.

  151. Xue, Y., Ge, Z.H., Du, X.Z., and Yang, L.J., On the Heat Transfer Enhancement of Plate Fin Heat Exchanger, Energies, vol. 11, p. 1398,2018b.

  152. Yang, J.M., Wu, H., Wang, M.R., and Liang, Y.Y., Prediction and Optimization of Radiative Thermal Properties of Nano TiO2 Assembled Fibrous Insulations, Int. J. Heat Mass Transf., vol. 117, pp. 729-739,2018.

  153. Yao, Y.M., Zhu, X.D., Zeng, X.L., Sun, R., Xu, J.B., and Wong, C.P., Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites, ACS Appl. Mater. Inter., vol. 10, pp. 9669-9678,2018.

  154. Yu, J.W., Jiang, Y.Q., Cai, W.H., and Li, F.Z., Forced Convective Condensation Flow and Heat Transfer Characteristics of Hydrocarbon Mixtures Refrigerant in Helically Coiled Tubes, Int. J. Heat Mass Transf, vol. 124, pp. 646-654,2018.

  155. Zhang, N., Yuan, Y.P., Cao, X.L., Du, Y.X., Zhang, Z.L., and Gui, Y.W., Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review, Adv. Eng. Mater., vol. 20, 1700753,2018a.

  156. Zhang, Z., Cai, J.C., Chen, F., Li, H., Zhang, W.X., and Qi, W.J., Progress in Enhancement of CO2 Absorption by Nanofluids: A Mini Review of Mechanisms and Current Status, Renew. Energy, vol. 118, pp. 527-535,2018b.

  157. Zhang, Y.Z., Sun, C., Bao, Y., and Zhou, Q., How Surface Roughness Reduces Heat Transport for Small Roughness Heights in Turbulent Rayleigh-Benard Convection, J. Fluid Mech, vol. 836, article R2, 2018c.

  158. Zhang, G., Duan, Z., Wang, Q.G., Li, L., Yao, W., and Liu, C.H., Electrical Potential Induced Switchable Wettability of Super-Aligned Carbon Nanotube Films, Appl. Surf. Sci., vol. 427, pp. 628-635,2018d.

  159. Zhang, J. and Lai, F.C., Heat Transfer Enhancement Using Corona Wind Generator, J. Electrostatics, vol. 92, pp. 6-13,2018.

  160. Zherdev, A.A., Tsiganov, D.I., Pushkarev, A.V., Shakurov, A.V., Burkov, I.A., and Vasilyev, A.O., Cryoprobe and Urethral Warming System Heat Transfer: Ultrasound Gel Phantom Study, J. Enhanc. Heat Transf., vol. 25, pp. 97-108,2018.

  161. Zhou, J.J., Wen, S., Liao, J.Y., Clarke, C., Tawfik, S.A., Ren, W., Mi, C., Wang, F., and Jin, D.Y., Activation of the Surface Dark-Layer to Enhance Upconversion in a Thermal Field, Nature Photonics, vol. 12, pp. 154-158,2018.

  162. Zou, D.Q., Ma, X.F., Liu, X.S., Zheng, P. J., and Hu, Y.P., Thermal Performance Enhancement of Composite Phase Change Materials (PCM) Using Graphene and Carbon Nanotubes as Additives for the Potential Application in Lithium-Ion Power Battery, Int. J. Heat Mass Transf., vol. 120, pp. 33-41,2018.