Library Subscription: Guest
Home Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Biomedical Engineering

ISSN Print: 0278-940X
ISSN Online: 1943-619X

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v36.i2-3.20
pages 93-125

The Biomechanics of Upper Extremity Kinematic and Kinetic Modeling: Applications to Rehabilitation Engineering

Brooke A. Slavens
Marquette University
Gerald F. Harris
Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin; Orthopaedic and Rehabilitation Engineering Center, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
Director of Orthopaedic Research, Medical College of Wisconsin

ABSTRACT

Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.