Library Subscription: Guest

MORPHOLOGY OF OPEN-CELL FOAMS: A CRITICAL REVIEW AND GEOMETRIC MODELING

Volume 22, Issue 7, 2019, pp. 869-887
DOI: 10.1615/JPorMedia.2019028906
Get accessGet access

ABSTRACT

Transport phenomena through open-cell foams are strongly affected by their complex microstructure. Morphological parameters, such as the diameter of pores and cells, the strut thickness, and the specific surface area, play key roles. Due to the intricate nature of an open-cell foam, its morphological models are very useful in engineering applications. We first review correlations in the literature of the morphological parameters that affect transport phenomena in foams. Then, with reference to the Kelvin's foam model, we present a unique model for the characterization of morphological parameters of open-cell foams, accounting for different strut shapes. New correlations among morphological parameters are proposed. There is good agreement between the correlations obtained with the proposed model and the experimental results from the literature. The model, accounting for any shape of the struts cross section, predicts values of foam morphological parameters generally closer to those predicted by available models not valid for all strut shapes.

REFERENCES
  1. Ambrosio, G., Bianco, N., Chiu, W.K., Iasiello, M., Naso, V, and Oliviero, M., The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer on Pressure Drop, Appl. Therm. Eng., vol. 103, pp. 333-343, 2016.

  2. Austin, S., Stephens, D., Walsh, K.K., Moore, C.A., Wesson, G.D., Njuguna, J., and Paul, R., Simulation of Open Microcellular Carbon Foams: Periodic and Aperiodic Structures, J. Porous Media, vol. 18, no. 3, pp. 231-244, 2015.

  3. Banhart, J., Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Progr. Mater. Sci., vol. 46, no. 6, pp. 559-632, 2001.

  4. Bhattacharya, A., Calmidi, V.V., and Mahajan, R.L., Thermophysical Properties of High Porosity Metal Foams, Int. J. Heat Mass Transf., vol. 45, no. 5, pp. 1017-1031, 2002.

  5. Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., and Tronconi, E., An Appraisal of the Heat Transfer Properties of Metallic Open-Cell Foams for Strongly Exo-/Endo-Thermic Catalytic Processes in Tubular Reactors, Chem. Eng. J., vol. 198, pp. 512-528, 2012.

  6. Boomsma, K. and Poulikakos, D., On the Effective Thermal Conductivity of A Three-Dimensionally Structured Fluid-Saturated Metal Foam, Int. J. Heat Mass Transf, vol. 44, no. 4, pp. 827-836, 2001.

  7. Buciuman, F.C. and Kraushaar-Czarnetzki, B., Ceramic Foam Monoliths as Catalyst Carriers. 1. Adjustment and Description of the Morphology, Ind. Eng. Chem. Res., vol. 42, no. 9, pp. 1863-1869,2003.

  8. Calmidi, V.V. and Mahajan, R.L., Forced Convection in High Porosity Metal Foams, J. Heat Transf., vol. 122, no. 3, pp. 557-565, 2000.

  9. Chen, X., Tavakkoli, F., and Vafai, K., Analysis and Characterization of Metal Foam-Filled Double-Pipe Heat Exchangers, Numer. Heat Transf., Part A: Appl., vol. 68, no. 10, pp. 1031-1049, 2015.

  10. Choi, J.B. and Lakes, R.S., Fracture Toughness of Re-Entrant Foam Materials with a Negative Poisson's Ratio: Experiment and Analysis, Int. J. Fracture, vol. 80, no. 1, pp. 73-83,1996.

  11. Colombo, P., Conventional and Novel Processing Methods for Cellular Ceramics, Phil. Trans. Royal Soc. London A: Math., Phys. Eng. Sci, vol. 364, no. 1838, pp. 109-124,2006.

  12. Cunsolo, S., Iasiello, M., Oliviero, M., Bianco, N., Chiu, W.K.S., and Naso, V, Lord Kelvin and Weaire-Phelan Foam Models: Heat Transfer and Pressure Drop, J. Heat Transf., vol. 138, no. 2, pp. 022601-022607, 2016.

  13. De Jaeger, P., T'Joen, C., Huisseune, H., Ameel, B. and De Paepe, M., An Experimentally Validated and Parameterized Periodic Unit-Cell Reconstruction of Open-Cell Foams, J. Appl. Phys., vol. 109, no. 10, p. 103519,2011.

  14. Dietrich, B., Heat Transfer Coefficients for Solid Ceramic Sponges-Experimental Results and Correlation, Int. J. Heat Mass Transf, vol. 61, pp. 627-637, 2013.

  15. Fourie, J.G. and Du Plessis, J.P., Pressure Drop Modelling in Cellular Metallic Foams, Chem. Eng. Sci., vol. 57, no. 14, pp. 2781-2789, 2002.

  16. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, Cambridge, U.K.: Cambridge University Press, 1997.

  17. Grosse, J., Dietrich, B., Martin, H., Kind, M., Vicente, J., and Hardy, E.H., Volume Image Analysis of Ceramic Sponges, Chem. Eng. Technol., vol. 31, no. 2, pp. 307-314,2008.

  18. Grosse, J., Dietrich, B., Incera Garrido, G.I., Habisreuther, P., Zarzalis, N., Martin, H., Kind, M., and Kraushaar-Czarnetzki, B., Morphological Characterization of Ceramic Sponges for Applications in Chemical Engineering, Ind. Eng. Chem. Res., vol. 48, no. 23, pp. 10395-10401,2009.

  19. Howell, J.R., Hall, M.J., and Ellzey, J.L., Combustion of Hydrocarbon F within Porous Inert Media, Prog. Energy Combust., vol. 22, no. 2, pp. 121-145, 1996.

  20. Huu, T.T., Lacroix, M., Huu, C.P., Schweich, D., and Edouard, D., Towards a More Realistic Modeling of Solid Foam: Use of the Pentagonal Dodecahedron Geometry, Chem. Eng. Sci., vol. 64, no. 24, pp. 5131-5142,2009.

  21. Iasiello, M., Cunsolo, S., Oliviero, M., Harris, W.M., Bianco, N., Chiu, W.K., and Naso, V, Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models, J. Heat Transf., vol. 136, no. 11, pp. 112601-112610, 2014.

  22. Iasiello, M., Cunsolo, S., Bianco, N., Chiu, W.K.S., and Naso, V., Developing Thermal Flow in Open-Cell Foams, Int. J. Thermal Sci., vol. 111, pp. 129-137,2017.

  23. Inayat, A., Freund, H., Zeiser, T., and Schwieger, W., Determining the Specific Surface Area of Ceramic Foams: The Tetrakaidec- ahedra Model Revisited, Chem. Eng. Sci., vol. 66, no. 6, pp. 1179-1188,2011.

  24. Incera Garrido, G.I., Patcas, F.C., Lang, S., and Kraushaar-Czarnetzki, B., Mass Transfer and Pressure Drop in Ceramic Foams: A Description for Different Pore Sizes and Porosities, Chem. Eng. Sci., vol. 63, no. 21, pp. 5202-5217, 2008.

  25. Kelvin, S.W.T., On the Division of Space with Minimum Partitional Area, Acta Mathematica, vol. 11, no. 1,pp. 121-124, 1887.

  26. Kumar, P. and Topin, F., Micro-Structural Impact of Different Strut Shapes and Porosity on Hydraulic Properties of Kelvin-Like Metal Foams, Transp. Porous Media, vol. 105, no. 1, pp. 57-81, 2014.

  27. Kumar, P, Topin, F., and Tadrist, L., Geometrical Characterization of Kelvin-Like Metal Foams for Different Strut Shapes and Porosity, J. Porous Media, vol. 18, no. 6, pp. 637-652, 2015.

  28. Kumar, P, and Topin, F., Impact of Anisotropy on Geometrical and Thermal Conductivity of Metallic Foam Structures, J. Porous Media, vol. 18, no. 10, pp. 949-970, 2015.

  29. Lacroix, M., Nguyen, P, Schweich, D., Huu, C.P., Savin-Poncet, S., and Edouard, D., Pressure Drop Measurements and Modeling on SiC Foams, Chem. Eng. Sci., vol. 62, no. 12, pp. 3259-3267, 2011.

  30. Lu, T.J., Stone, H.A., and Ashby, M.F., Heat Transfer in Open-Cell Metal Foams, ActaMaterialia, vol. 46, no. 10, pp. 3619-3635, 1998.

  31. Mahjoob, S., and Vafai, K., A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers, Int. J. Heat Mass Transf., vol. 5, no. 15, pp. 3701-3711, 2008.

  32. Mancin, S., Single-Phase Heat Transfer and Fluid Flow through Enhanced Surfaces and in Microgeometries, PhD, Universita Degli Studi di Padova, 2008.

  33. Mancin, S., Zilio, C., Cavallini, A., and Rossetto, L., Heat Transfer during Air Flow in Aluminum Foams, Int. J. Heat and Mass Transf, vol. 53, no. 21, pp. 4976-4984, 2010.

  34. Petrasch, J., Meier, F., Friess, H., and Steinfeld, A., Tomography based Determination of Permeability, Dupuit-Forchheimer Coefficient and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics, Int. J. Heat Fluid Flow, vol. 29, no. 1, pp. 315-326,2008.

  35. Plateau, J., Statique Experimental et Theorique des Liquides Soumis aux Seules Forces Molecularies, Gathier-Villars, Paris, 1873.

  36. Richardson, J.T.,Peng, Y., andRemue, D., Properties of Ceramic Foam Catalyst Supports: Pressure Drop, Appl. Catal. A: General, vol. 204, no. 1, pp. 19-32, 2000.

  37. Stemmet, C.P., Van Der Schaaf, J., Kuster, B.F.M., and Schouten, J.C., Solid Foam Packings for Multiphase Reactors, Chem. Eng. Res. Des, vol. 84, no. 12, pp. 1134-1141,2006.

  38. T'Joen, C., De Jaeger, P, Huisseune, H., Van Herzeele, S., Vorst, N., and De Paepe, M., Thermo-Hydraulic Study of a Single Row Heat Exchanger Consisting of Metal Foam Covered Round Tubes, Int. J. Heat Mass Transf., vol. 53, no. 15, pp. 3262-3274, 2010.

  39. Tawfik, H., Hung, Y., and Mahajan, D., Metal Bipolar Plates for PEM Fuel Cell-A Review, J. Power Sources, vol. 163, no. 2, pp. 755-767, 2007.

  40. Twigg, M.V. and Richardson, J.T., Fundamentals and Applications of Structured Ceramic Foam Catalysts, Ind. Eng. Chem. Res., vol. 46, no. 12, pp. 4166-4177, 2007.

  41. Wang, P, Vafai, K., and Liu, D.Y., Analysis of Radiative Effect under Local Thermal Non-Equilibrium Conditions in Porous Media-Application to a Solar Air Receiver, Numer. Heat Transf., Part A: Appl., vol. 65, no. 10, pp. 931-948, 2014.

  42. Weaire, D. and Phelan, R., A Counter-Example to Kelvin's Conjecture on Minimal Surfaces, Phil. Mag. Lett., vol. 69, no. 2, pp. 107-110, 1994.

  43. Wu, Z., Caliot, C., Bai, F., Flamant, G., Wang, Z., Zhang, J., and Tian, C., Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications, Appl. Energy, vol. 87, no. 2, pp. 504-513, 2010.

  44. Xu, W., Zhang, H., Wei, W., Yang, Z., and Zhang, J., Numerical and Experimental Investigations on the Electrical Conductivity of Foam Materials, Special Topics Rev. Porous Media: Int. J., vol. 2, no. 1, pp. 35-42, 2011.

  45. Zafari, M., Panjepour, M., Meratian, M., and Emami, M.D., CFD Simulation of Forced Convective Heat Transfer by Tetrakaidec- ahedron Model in Metal Foams, J. Porous Media, vol. 19, no. 1,pp. 1-11,2016.

CITED BY
  1. Buonomo Bernardo, di Pasqua Anna, Manca Oronzio, Nappo Sergio, Nardini Sergio, Entropy generation analysis of laminar forced convection with nanofluids at pore length scale in porous structures with Kelvin cells, International Communications in Heat and Mass Transfer, 132, 2022. Crossref

  2. Buonomo Bernardo, di Pasqua Anna, Manca Oronzio, Nappo Sergio, Nardini Sergio, Analysis at cell scale of porosity effect on forced convection with nanofluids in porous structures with Kelvin cells, International Journal of Thermofluids, 16, 2022. Crossref

Forthcoming Articles

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain