Library Subscription: Guest

INVESTIGATION ON CAPILLARY FLOW IN TUBES WITH VARIABLE DIAMETERS

Volume 22, Issue 13, 2019, pp. 1627-1638
DOI: 10.1615/JPorMedia.2019026774
Get accessGet access

ABSTRACT

Capillary flow in single cylindrical tubes with constant diameters (0.2 and 0.4 mm) was investigated experimentally, using alcohol as working fluid. The flow behavior was recorded by a high-speed camera in terms of height-time relationship and compared with an existing theoretical model. The experimental results illustrated good consistency with the model. Next, experiments were conducted in variable diameter tubes (expanding from 0.2 to 0.4 mm and contracting from 0.4 to 0.2 mm) and the capillary flow characteristics were analyzed. Before reaching the change point the flow showed a similar trend as that in constant diameter tubes, but it demonstrated different features after passing the change point. It was also found that the location of change point had great influence on the flow behavior.

REFERENCES
  1. Alazmi, B. and Vafai, K., Analysis of Variable Porosity, Thermal Dispersion, and Local Thermal Nonequilibrium on Free Surface Flows through Porous Media, J. Heat Transf.-Transact. ASME, vol. 126, pp. 389-399, 2004.

  2. Amara, M.E. and Nasrallah, S.B., Capillary Rise in a Non-Uniform Tube, J. Porous Media, vol. 14, pp. 411-422, 2011.

  3. Amara, M.E., Perre, P., and Nasrallah, S.B., Lattice-Boltzmann Analysis of Capillary Rise, J. Porous Media, vol. 19, pp. 453-469, 2016.

  4. Batch, G.L., Chen, Y.T., and Macoskot, C.W., Capillary Impregnation of Aligned Fibrous Beds: Experiments and Model, J. Reinforced Plastics Composites, vol. 15, pp. 1027-1051, 1996.

  5. Berthier, J., Gosselin, D., and Berthier, E., A Generalization of the Lucas-Washburn-Rideal Law to Composite Microchannels of Arbitrary Cross Section, J. Microfluidics Nanofluidics, vol. 19, pp. 1-11,2015.

  6. Berthier, J., Gosselin, D., Pham, A., Boizot, F., Delapierre, G., Belgacem, N., and Chaussy, D., Spontaneous Capillary Flows in Piecewise Varying Cross Section Microchannels, J. Sensors Actuators B Chem., vol. 223, pp. 868-877, 2016.

  7. Bosanquet, C.H., On the Flow of Liquids into Capillary Tubes, J. Philos. Mag, vol. 45, pp. 525-531,1923.

  8. Chippada, S., Jue, T.C., and Ramaswamy, B., Finite Element Simulation of Combined Buoyancy and Thermocapillary Driven Convection in Open Cavities, Int. J. Numer. Meth. Eng., vol. 38, pp. 335-351, 1995.

  9. Depalo, A. and Santomaso, A.C., Wetting Dynamics and Contact Angles of Powders Studied through Capillary Rise Experiments, J. Colloids Surfaces A Physicochem. Eng. Aspects, vol. 436, pp. 371-379, 2013.

  10. Dubba, S.K. and Kumar, R., Flow of Refrigerants Through Capillary Tubes: A State-of-the-Art, J. Exp. Therm. Fluid Sci, vol. 81, pp. 370-381,2017.

  11. Erickson, D., Li, D., and Park, C.B., Numerical Simulations of Capillary-Driven Flows in Nonuniform Cross-Sectional Capillary Tubes, J. Colloid Interface Sci., vol. 250, pp. 422-430, 2002.

  12. Fries, N. and Dreyer, M., An Analytic Solution of Capillary Rise Restrained by Gravity, J. Colloid Interf. Sci, vol. 320, pp. 259-263, 2008a.

  13. Fries, N. and Dreyer, M., The Transition from Inertial to Viscous Flow in Capillary Rise, J. Colloid Interf. Sci, vol. 327, pp. 125-128, 2008b.

  14. Geromichalos, D., Mugele, F., and Herminghaus, S., Nonlocal Dynamics of Spontaneous Imbibition Fronts, J. Phys. Rev. Lett:., vol. 89, no. 10, pp. 104503-1-104503-4, 2002. DOI: 10.1103/PhysRevLett.89.104503.

  15. Han, A., Mondin, G., Hegelbach, N.G., de Rooij, N.F., and Staufer, U., Filling Kinetics of Liquids in Nanochannels as Narrow as 27 nm by Capillary Force, J. Colloid Interf. Sci, vol. 293, no. 1, pp. 151-157, 2006.

  16. Hemmat, M. and Borhan, A., Buoyancy-Driven Motion of Drops and Bubbles in a Periodically Constricted Capillary, J. Chem. Eng. Commun, vols. 148-150, pp. 363-384, 1996.

  17. Huang, W., Liu, Q., and Li, Y., Capillary Filling Flows inside Patterned-Surface Microchannels, J. Chem. Eng. Technol., vol. 29, pp. 716-723,2010.

  18. Jiang, T.S., Soo-Gun, O.H., and Slattery, J.C., Correlation for Dynamic Contact Angle, J. Colloid Interf. Sci, vol. 69, pp. 74-77, 1979.

  19. Jong, W.R., Kuo, T.H., Ho, S.W., Chiu, H.H., and Peng, S.H., Flows in Rectangular Microchannels Driven by Capillary Force and Gravity, J. Int. Commun. Heat Mass Transf., vol. 34, no. 2, pp. 186-196, 2007.

  20. Katoh, K., Wakimoto, T., Yamamoto, Y., and Ito, T., Dynamic Wetting Behavior of a Triple-Phase Contact Line in Several Experimental Systems, J. Exp. Therm. Fluid Sci., vol. 60, pp. 354-360, 2015.

  21. Kim, Y.B. and Sung, J., Capillary-Driven Micro Flows for the Underfill Process in Microelectronics Packaging, J. Mech. Sci. Technol, vol. 26, pp. 3751-3759, 2012.

  22. Kirby, A.R., Gunning, A.P., Waldron, K.W., Morris, V.J., and Ng, A., Visualization of Plant Cell Walls by Atomic Force Microscopy, Biophys. J., vol. 70, no. 3, pp. 1138-1143, 1996.

  23. Liou, W.W., Peng, Y., and Parker, P.E., Analytical Modeling of Capillary Flow in Tubes of Nonuniform Cross Section, J. Colloid Interf. Sci, vol. 333, pp. 389-399,2009.

  24. Lockington, D.A. and Parlange, J.Y., A New Equation for Macroscopic Description of Capillary Rise in Porous Media, J. Colloid Interf. Sci, vol. 278, pp. 404-409,2004.

  25. Lucas, R., Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten, J. Colloid Polymer Sci., vol. 23, pp. 15-22, 1918.

  26. Oh, J.M., Faez, T., de Beer, S., and Mugele, F., Capillarity-Driven Dynamics of Water-Alcohol Mixtures inNanofluidic Channels, J. Microfluidics Nanofluidics, vol. 9, no. 1, pp. 123-129, 2010.

  27. Oyanader, M.A., Arce, P.E., and Dzurik, A., Role of Geometry of Capillary Bundles on Flow Reversal in Electrokinetic Soil Reclamation: A Comparative Study based on the Microscopic Scale, J. Porous Media, vol. 11, pp. 733-750,2008.

  28. Paquet, M.C., Danovitch, D., Souare, P.M., and Sylvestre, J., Study of Capillary Underfill Filler Separation in Advanced Flip Chip Packages, Elect. Components Technol. Conf., pp. 1361-1368,2017.

  29. Peters, A. and Durner, W., A Simple Model for Describing Hydraulic Conductivity in Unsaturated Porous Media Accounting for Film and Capillary Flow, J. Water Resour. Res, vol. 44, pp. 2276-2283, 2008.

  30. Quere, D., Raphael, E., and Ollitrault, J.-Y., Rebounds in a Capillary Tube, Langmuir, vol. 15, pp. 3679-3682, 1999.

  31. Tas, N.R., Haneveld, J., Jansen, H.V., Elwenspoek, M., and van den Berg, A., Capillary Filling Speed of Water in Nanochannels, J. Appl. Phys. Lett, vol. 85, pp. 3274-3276, 2004.

  32. Wan, J.W., Zhang, W.J., and Bergstrom, D.J., An Analytical Model for Predicting the Underfill Flow Characteristics in Flip-Chip Encapsulation, IEEE Transact. Adv. Packag., vol. 28, pp. 481-487, 2005.

  33. Washburn, E.W., The Dynamics of Capillary Flow, J. Phys. Rev, vol. 17, pp. 273-283,1921.

  34. Yang, Y.W., Zografi, G., and Miller, E.E., Capillary Flow Phenomena and Wettability in Porous Media: I. Static Characteristics, J.ColloidInterf. Sci., vol. 122, pp. 24-34, 1988.

  35. Yao, X.J., Wang, Z.D., and Zhang, W.J., A New Analysis of the Capillary Driving Pressure for Underfill Flow in Flip-Chip Packaging, IEEE Transact. Components Packag. Manufact. Technol., vol. 4, pp. 1534-1544,2017.

  36. Young, W.B., Analysis of Capillary Flows in Non-Uniform Cross-Sectional Capillary Tubes, J. Colloids Surfaces A Physicochem. Eng. Aspects, vol. 234, pp. 123-128, 2004.

  37. Zhang, M., Yu, C., Yang, Y., Sun, Y., Zhang, Y., Sun, B., and Yang, W., Study on Gas Wettability based on Single Straight Capillary, Spec. Topics Rev. Porous Media: Int. J, vol. 9, no. 1, pp. 21-26, 2018.

  38. Zhmud, B.V., Tiberg, F., and Hallstensson, K., Dynamics of Capillary Rise, J. Colloid Interf. Sci., vol. 228, pp. 263-269,2000.

CITED BY
  1. Chen Shangtong, Duan Li, Kang Qi, Study on propellant management device in plate surface tension tanks, Acta Mechanica Sinica, 37, 10, 2021. Crossref

  2. Chen Shangtong, Chen Yi, Duan Li, Kang Qi, Capillary Rise of Liquid in Concentric Annuli Under Microgravity, Microgravity Science and Technology, 34, 3, 2022. Crossref

  3. Chen Aiqiang, Zhang Haoyan, Song Jianfei, Liu Bin, Zhang Chensi, Theodorakis Panagiotis E., On the meniscus shape and marangoni flow in capillary tubes with noncircular cross-section shapes, The European Physical Journal Applied Physics, 97, 2022. Crossref

Forthcoming Articles

ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain