Library Subscription: Guest

Third International Conference on Porous Media and its Applications in Science, Engineering and Industry
June 20-24, 2010, Tuscany, Italy

Volume 13, Issue 1, 2010, pp. 97-101
DOI: 10.1615/JPorMedia.v13.i1.90
Get accessGet access

ABSTRACT

We had organized and held two highly successful conferences on Porous Media and its Applications in Science, Engineering and Industry were held in 1996 in Kona, Hawaii, and in 2007 in Kauai, Hawaii, which were attended by various researchers in porous media worldwide. This conference will build on the last two conferences so that it reflects the research done internationally in the currently active areas of the topic. The presence of the highly successful Journal of Porous Media and both editions of the very well received Handbook of Porous Media will act as an additional impetus to further galvanize this conference. Papers of high quality will be considered for submission to the Journal of Porous Media.
The pioneering works in the area of fluid transport as well as some aspects of heat transport in porous media go back to the beginning of this century. Convective heat transfer in fluid-saturated porous media has gained considerable attention in recent decades due to its relevance in a wide range of applications such as thermal insulation engineering, water movements in geothermal reservoirs, heat pipes, underground spreading of chemical waste, nuclear waste repository, geothermal engineering, grain storage and enhanced recovery of petroleum reservoirs. Radiative heat transfer and multiphase transport processes in porous media, both with and without phase change, have gained extensive attention in recent years. This is due to the wide range of applicability of these research areas in contemporary technology. These applications include, but are not restricted to, areas such as geothermal engineering, building thermal insulation, chemical catalytic reactors, packed cryogenic microsphere insulation, petroleum reservoirs, direct contact heat exchangers, coal combustors, nuclear waste repositories, and heat pipe technology.
Several applications related to porous media require a detailed analysis of convective heat transfer in different geometrical shapes, orientations and configurations. Based on the specific applications, the flow in the porous medium may be internal or external. Most of the studies in porous media carried out until the past two decades are based on the Darcy flow model, which in turn is based on the assumption of creeping flow through an infinitely extended uniform medium. However, it is now generally recognized that non-Darcian effects are quite important for certain applications. Different models have been introduced for studying and accounting for such non-Darcian effects as the inertial, boundary, and variable porosity effects. The ultimate goal of studies in convective heat transfer in porous media is to determine the dimensionless heat transfer coefficient, the Nusselt number. A considerable amount of research has been carried out to accomplish this, and empirical correlations for the Nusselt number for a variety of configurations and boundary conditions have been established, with certain limitation, of a wide variety of current technological applications. Many industrial operations in the areas of chemical and metallurgical engineering involve the passage of a fluid stream through a packed bed of particulate solids to obtain extended solid fluid interfacial areas or good fluid mixing. Typical examples of applications involving such systems include catalytic and chromatographic reactions, packed absorption and distillation towers, ion exchange columns, packed filters, pebble-type heat exchanger, petroleum reservoirs, geothermal operations and many others. The design of these systems is decided by mechanisms of pressure drop, fluid flow and heat and mass transfer governing the process in the packed bed arrangement. Considerable attention has been paid to the aforementioned aspects because of their direct influence on the optimization and stability of the design of these systems.
Developments in modeling transport phenomena in porous media have advanced several pertinent areas, such as biology. As such the conference will also entertain papers related to bio transport in porous media as well as research related to turbulent modeling in porous media.

Forthcoming Articles

ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain