Library Subscription: Guest
Heat Transfer Research

Published 18 issues per year

ISSN Print: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

Multi-Equation Turbulence Model for a Free Convection Boundary Layer

Volume 33, Issue 1&2, 2002, 6 pages
DOI: 10.1615/HeatTransRes.v33.i1-2.40
Get accessGet access

ABSTRACT

A multi-equation turbulence model for free-convective boundary layer near a vertical flat plate is developed. Attention was specially paid to description of the mean squared temperature fluctuations and correlation of fluctuations of longitudinal velocity and temperature. An algebraic relation taking account of specific features of a free-convective flow was used to model the projection of a turbulent heat flux into a normal to a solid surface. The numerical results obtained are in good agreement with experimental data.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain