Library Subscription: Guest
Heat Transfer Research

Published 18 issues per year

ISSN Print: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

NUMERICAL ANALYSIS OF EFFECTS OF NANOFLUID AND ANGULAR ORIENTATION ON HEAT TRANSFER PERFORMANCE OF AN ELLIPTICAL PIN-FIN HEAT SINK

Volume 48, Issue 2, 2017, pp. 161-175
DOI: 10.1615/HeatTransRes.2016011084
Get accessGet access

ABSTRACT

This paper presents an investigation of the effect of a nanofluid on the heat transfer performance of an elliptical pin-fin heat sink including the influence of pin orientation. The orientation angle of pins is increased with the number of pins in an array with a 0 degree angle for the first pin and a 90 degree angle for the last pin. To study the flow and heat transfer behaviors in a pin-fin heat sink, the three-dimensional steady Navier−Stokes and energy equations were discretized using a finite volume approach and were solved iteratively. Dl-water was used as a base coolant fluid, while copper oxide (CuO) nanoparticles were used in the present study with mean diameters of 29 nm. The results showed that (1) changing the angular orientation of pins can cause significant enhancement in heat transfer, (2) a significant enhancement of heat transfer can be attained in the system due to the suspension of CuO nanoparticles in the base fluid in comparison with pure water, (3) enhancement of heat transfer is intensified with increasing volume fraction of nanoparticles and Reynolds number, and (4) an increase in the volume fraction of nanoparticles, which is responsible for higher heat transfer performance, leads to a higher pressure drop.

CITED BY
  1. Al-damook Amer, Azzawi Itimad D. J., The Thermohydraulic Characteristics and Optimization Study of Radial Porous Heat Sinks Using Multi-Objective Computational Method, Journal of Heat Transfer, 143, 8, 2021. Crossref

  2. Rajab Dr Husam, Pesyridis Professor Apostolos, Kourmpetis Dr Miltiadis, Al-Noman Dr Saeed, Optimization and Thermal Performance Assessment of Elliptical Pin-Fin Heat Sinks, Day 2 Tue, February 22, 2022, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain