Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Special Topics & Reviews in Porous Media: An International Journal
ESCI SJR: 0.277 SNIP: 0.52 CiteScore™: 1.3

ISSN Print: 2151-4798
ISSN Online: 2151-562X

Special Topics & Reviews in Porous Media: An International Journal

DOI: 10.1615/SpecialTopicsRevPorousMedia.2020030318
pages 555-567


A. L. Matveev
Nuclear Safety Institute of Russian Academy of Sciences (NSI RAS), 52 Bolshaya Tul'skaya St., Moscow, 115191, Russia
Leonid V. Matveev
Nuclear Safety Institute of Russian Academy of Sciences (NSI RAS), 52 Bolshaya Tul'skaya St., Moscow, 115191, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskii per., Dolgoprudny, Moscow Region, 141700, Russia


Impurity transport in a fractured-porous medium containing a small volume fraction of adsorbing inclusions is considered. Transport regimes are calculated depending on fracture porosity of the medium, characteristic sizes and porosity of blocks, volume fraction occupied by the inclusions, and adsorption coefficient in them. The conditions are specified for which structural peculiarities of the medium significantly affect transport regimes. Transport characteristics at asymptotically large distances from the impurity source are calculated.


  1. Barenblatt, G., Zheltov, Iu., and Kochina, I., Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata], J. Appl. Math. Mech, vol. 24, no. 5, pp. 1286-1303,1960.

  2. Benson, D.A., Schumer, R., Meerschaert, M.M., and Wheatcraft, S.W., Fractional Dispersion, Levy Motion, and the MADE Tracer Tests, Transp. Porous Media, vol. 42, nos. 1-2, pp. 211-240,2001.

  3. Berkowitz, B. and Scher, H., Theory of Anomalous Chemical Transport in Fracture Networks, Phys. Rev. E, vol. 57, no. 5, pp. 5858-5869,1998.

  4. Bolshov, L.A., Kondratenko, P.S., and Matveev, L.V., Colloid-Facilitated Contaminant Transport in Fractal Medium, Phys. Rev E, vol. 84, no. 4, p. 041140,2011.

  5. Bouchaud, J.-P. and Georges, A., Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Ap-plications, Phys. Rep, vol. 195, nos. 4-5, pp. 127-293,1990.

  6. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J., On Matrix Diffusion Formulations, Solution Methods and Qualitative Effects, Hydrogeol. J., vol. 6, no. 1, pp. 178-190,1998.

  7. Chukbar, K.V., Stochastic Transport and Fractional Derivatives, JETP, vol. 81, no. 5, pp. 1025-1029,1995.

  8. Chukbar, K.V., Quasidiffusion of a Passive Scalar, JETP, vol. 82, no. 4, pp. 719-726,1996.

  9. Cvetcovic, V., A General Memory Function for Modeling Mass Transfer in Groundwater Transport, Water Resour. Res., vol. 48, no. 4, p. W04528,2012.

  10. Dentz, M. and Berkowitz, B., Transport Behavior of a Passive Solute in Continuous Time Random Walks and Multirate Mass Transfer, Water Resour. Res., vol. 39, no. 5, p. 1111,2003.

  11. Donado, L.D., Sanchez-Vila, X., Dentz, M., Carrera, J., and Bolster, D., Multicomponent Reactive Transport in Multicontinuum Media, Water Resour. Res., vol. 45, no. 11, p. W11402,2009.

  12. Dong, Ch., Sun, S., and Taylor, G.A., Numerical Modeling of Contaminant Transport in Fractured Porous Media Using Mixed Finite-Element and Finite Volume Method, J. Porous Media, vol. 14, no. 3, pp. 219-242,2011.

  13. Fisher, D.S., Random Walks in Random Environments, Phys. Rev. A, vol. 30, no. 2, pp. 960-964,1984.

  14. Gerke, H.H. and van Genuchten, M.Th., A Dual-Porosity Model for Simulating the Preferential Movement of Water and Solutes in Structured Porous Media, Water Resour. Res., vol. 29, no. 2, pp. 305-319,1993.

  15. Goltz, N.M. and Roberts, P.V., Interpreting Organic Transport Data from a Field Experiment Using Physical Nonequilibrium Models, J. Contam. Hydrol., vol. 1, pp. 77-93,1986.

  16. Harvey, R. and Gorelick, S.M., Multiple-Rate Mass Transfer for Modeling Diffusion and Space Reactions in Media with Pore-Scale Heterogeneity, Water Resour. Res., vol. 31, no. 10, pp. 2383-2400,1995.

  17. Isichenko, M.B., Percolation, Statistical Topography and Transport in Random Media, Rev. Mod. Phys., vol. 64, no. 4, pp. 961-1043,1992.

  18. Kondratenko, P.S. and Matveev, L.V., Asymptotic Regimes and Structure of Concentration Tails in the Dykhne Model, JETP, vol. 104, no. 3, pp. 445-450,2007.

  19. Masciopinto, C. and Passarella, G., Mass-Transfer Impact on Solute Mobility in Porous Media: A New Mobile-Immobile Model, J. Contam. Hydrol., vol. 215, pp. 21-28,2018.

  20. Matveev, L.V., Impurity Transport in a Dual-Porosity Medium with Sorption, JETP, vol. 115, no. 5, pp. 829-836,2012.

  21. Matveev, L.V., Anomalous Nonequilibrium Transport Simulations Using a Model of Statistically Homogeneous Fractured-Porous Medium, Physica A, vol. 406, pp. 119-130,2014.

  22. Muscus, N. and Falta, R.W., Semi-Analytical Method for Matrix Diffusion in Heterogeneous and Fractured Systems with Parent- Daughter Reactions, J. Contam. Hydrol., vol. 218, pp. 94-109,2018.

  23. Nair, V.V. and Thampi, S.G., Numerical Modeling of Contaminant Transport in Sets of Parallel Fractures with Fracture Skin, J. Porous Media, vol. 15, no. 1,pp. 95-100,2012.

  24. Prakash, P. and Nambi, I.M., Dissolution and Contaminant Transport in Aquifers with Spatially and Temporally Variable Hydraulic Properties, Spec. Topics Rev. Porous Media: Int. J., vol. 3, no. 4, pp. 353-369,2012.

  25. Quintard, M., Transfer in Porous Media, Spec. Topics Rev. Porous Media: Int. J., vol. 6, no. 2, pp. 91-108,2015.

  26. Sahimi, M., Flow Phenomena in Rocks: From Continuum Models to Fractals, Percolation, Cellular Automata, and Simulated Annealing, Rev. Mod. Phys., vol. 65, no. 4, pp. 1393-1534,1993.

  27. Sahimi, M., Dispersion in Porous Media, Continuous-Time Random Walks, and Percolation, Phys. Rev. E, vol. 85, no. 1, p. 016316, 2012.

  28. Simunek, J. and van Genuchten, M.Th., Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS, Vadose ZoneJ., vol. 7, no. 2, pp. 728-797,2008.

  29. Willmann, M., Carrera, J., Sanchez-Vila, X., Silva, O., and Dentz, M., Coupling of Mass Transfer and Reactive Transport for Non-Linear Reactions in Heterogeneous Media, Water Resour. Res., vol. 46, no. 7, p. W07512,2010.

Articles with similar content:

Hydrochemical Characteristics of the Kiev Reservoir at the Present Time
Hydrobiological Journal, Vol.53, 2017, issue 6
N. Ye. Semenyuk, V. I. Shcherbak, V. M. Yakushin, M. I. Linchuk
Effect of Nonlinear Interface Debonding on the Constitutive Model of Composite Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
C. Liu, Y. Huang, H. Tan, Philippe H. Geubelle
TsAGI Science Journal, Vol.40, 2009, issue 6
Sergei Vladimirovich Rusakov, Vladlen Sergeevich Galkin
Damage Evolution in an Underground Gallery Induced by Drying
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
Bernhard Pichler, Luc Dormieux, Sophie Cariou
Composites: Mechanics, Computations, Applications: An International Journal, Vol.7, 2016, issue 3
Alexey Talonov, Viktoria L. Savatorova, Alexander N. Vlasov