Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Intranasal Delivery of Nanotherapeutics/ Nanobiotherapeutics for the Treatment of Alzheimer's Disease: A Proficient Approach

Volume 36, Issue 5, 2019, pp. 373-447
DOI: 10.1615/CritRevTherDrugCarrierSyst.2018026762
Get accessGet access

ABSTRACT

Therapeutics and biotherapeutics-based fabrication of nanoparticles has fascinated scientists since the past two decades and exciting challenges have been surmounted. Particular interest has been paid to the exploitation of functionalized nanocarriers in the treatment of Alzheimer's disease (AD) using nasal route. Development of various material-based nanocarriers is a common approach to obtain advanced drug delivery systems possessing the ability to follow intranasal (IN) route for brain targeting, which would ultimately ameliorate the effect of AD. This review highlights the various pathological theories for AD along with their controversies. This work intends to provide a thorough, up-to-date, and holistic discussion on various pathways for nose-to-brain delivery and different formulation factors impacting on nasal absorption. The various material properties and their engineered nanocarriers as a smart delivery system, including synergistic effect of therapeutic/biotherapeutic agent in IN delivery as well as in AD therapy have been discussed. This review also emphasizes toxicity, especially neurotoxicity concerns pertaining to drug delivery systems.

REFERENCES
  1. Klimova B, Kuca K. Alzheimer's disease: potential preventive, non-invasive, intervention strategies in lowering the risk of cognitive decline: a review study. J Appl Biomed. 2015;13(4):257-261.

  2. Alzheimer's Association. 2019 Alzheimer's disease facts and figures. Alzheimer's Dementia. 2019;15:321-387.

  3. Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer's disease. Pharmacol Res. 2017;120:68-87.

  4. Parihar M, Hemnani T. Alzheimer's disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004;11(5):456-467.

  5. Reimen EM. Attack on amyloid-P protein. News Views. 2016;573:36-37.

  6. Glenner G, Wong C. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloidogenic derivative. Science. 1984;255:728-730.

  7. Mangialasche F, Solomon A, Winblad B. Alzheimer's disease: Clinical trials and drug development. Lancet Neurol. 2010;9(7):702-16.

  8. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A. The antibody aducanumab reduces Ap plaques in Alzheimer's disease. Nature. 2016;537:50-56.

  9. Retiring the Amyloid Cascade Hypothesis as a Cause of Alzheimer's. [accessed 20 June 2019; cited 2017 Aug 31]. Available from: https://www.pcrm.org/news/good-science-digest/retiring-amyloid-cascade-hypothesis-cause-alzheimers.

  10. Wen MW, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, Farid RM, Blanco-Prieto MJ, Billa N, Hanafy AS. Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges. J Control Release. 2017;245:95-107.

  11. Md S, Bhattmisra SK, Zeeshan F, Shahzad N, Mujtaba MA, Meka VS, Radhakrishnan A, Kesharwani P, Baboota S, Ali J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Tech. 2018;43:295-310.

  12. Contestabile A. The history of the cholinergic hypothesis. Behav Brain Res. 2011;221(2):334-340.

  13. Dong XX, Wang Y, Quin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin. 2009;30(4):379-387.

  14. Iqbal K, Alonso AC, Chen S. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005;1739(2):198-210.

  15. Martin L, Latypova X, Wilson CM. Tau protein kinases:involvement in Alzheimer's disease. Ageing Res Rev. 2013;12(1):289-309.

  16. Kolarova M, Sengupta U, Bartos A, Ricny J, Kayed R. Tau Oligomers in sera of patients with alzheimer's disease and aged controls. J Alzheimers Dis. 2017;58:471-8.

  17. Braak H, Tredici KD. The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol. 2011;121:171-181.

  18. Silverman W, Wisniewski HM, Bobinski M, Wegiel J. Frequency of stages of alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):377-379.

  19. Alzforum. In first phase 3 trial, the tau drug LMTM did not work. period. Available from: http://www. alzforum.org/news/conference-coverage/first-phase-3-trial-tau-drug-lmtm-did-not-work-period.

  20. Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH, Moebius HJ, Bentham P, Kook KA, Wischik DJ, Schelter BO, Davis CS, Staff RT, Bracoud L, Shamsi K, Storey JMD, Harrington CR, Wischik CM. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. The Lancet. 2016;388(10062):2873-84.

  21. Swerdlow RH, Burns JM, Khan SM. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta Mol Basis Dis. 2014;1842(8):1219-1231.

  22. Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer's disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv. 2017;35:178-216.

  23. Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuro-pathogenesis of Alzheimer's disease. Am J Neurodegener Dis. 2016;5:1-28.

  24. Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm. 2012;82(1):1-18.

  25. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system:relations to b-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002;68(3):209-245.

  26. Farlow MR, Miller ML, Pejovic V. Treatment options in Alzheimer's disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord. 2008;25(5):408-422.

  27. Aagaard L. Central nervous system stimulants and drugs that suppress appetite. In: Sidhartha DR, editor. Side effects of drugs annual. New York: Elsevier; 2014. p. 1-9.

  28. Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in Alzheimer's diagnosis and therapy:the implications of nanotechnology. Trends Biotechnol. 2017;35(10):937-953.

  29. Thwala LN, Preat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals:A critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14(1):23-36.

  30. Hanson LR, Frey WN. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9 (Suppl 3):S5.

  31. Zhang QZ, Zha LS, Zhang Y, Jiang WM, Lu W, Shi ZQ, Jiang XG, Fu SK. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target. 2006;14:281-290.

  32. Zhao Y, Tao T, Wu J, Pi J, He N, Chai X, Chen Q. Pharmacokinetics of tramadol in rat plasma and cerebrospinal fluid after intranasal administration. J Pharm Pharmacol. 2008;60(9):1149-1154.

  33. Dhuri SV, Hanson LR, Frey WN. Intranasal delivery to the central nervous system:mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654-1673.

  34. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5:514-516.

  35. Jiang Y, Li Y, Liu X. Intranasal delivery: circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv. 2015;12(11):1717-1725.

  36. Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies for management of Alzheimer's disease. J Drug Target. 2014;22(4):279-294.

  37. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614-628.

  38. Kristensson K, Olsson Y. Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol. 1971;19:145-154.

  39. Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanism and experimental considerations. J Pharm Sci. 2010;99(4):1654-1673.

  40. Jin K, Xie L, Childs J, Sun Y, Mao XO, Logvinova A, Greenberg DA. Cerebral neurogenesis is induced by intranasal administration of growth factors. Ann Neurol. 2003;53(3):405-409.

  41. Mackay-Sim A. Neurogenesis in the adult olfactory neuroepithelium. In: Doty RL, editor. Handbook of olfaction and gustation. 2nd ed. New York: Marcel Dekker; 2003. p. 93-113.

  42. Balin BJ, Broadwell RD, Salcman M, el-Kalliny M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986;251(2):260-280.

  43. Williams SK, Franklin RJ, Barnett SC. Response of olfactory ensheathing cells to the degeneration and regeneration of the peripheral olfactory system and the involvement of the neuregulins. J Comp Neurol. 2004;470(1):50-62.

  44. Buck LB. The chemical senses. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000 p. 625-652.

  45. Liu Q, Shen Y, Chen J, Gao X, Feng C, Wang L, Zhang Q, Jiang X. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm Res. 2012;29:546-558.

  46. Silver WL. The common chemical sense. In: Finger TE, Silver WL, editors. Neurobiology of taste and smell. Malabar, India: Krieger; 1991. p. 65-87.

  47. Alimohammadi H, Silver WL. Evidence for nicotinic acetylcholine receptors on nasal trigeminal nerve endings of the rat. Chem Senses. 2000;25(1):61-66.

  48. Mistry A, Glud SZ, Kjems J, Randel J, K. Howard A, Stolnik S, Illum L. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J Drug Target. 2009;17(7):543-552.

  49. Bonaccorso A, Musumeci T, Serapide MF, Pellitteri R, Uchegbu IF, Puglisi G. Nose to brain delivery in rats: effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf B Biointerf. 2017;154:297-306.

  50. Faker WF. The nasal mucosa and the subarachnoid space. Am J Anat. 1937;62(1):121-148.

  51. Rake G. The rapid invasion of the body through the olfactory mucosa. J Exp Med. 1937;65(2):303-15.

  52. Jansson B, Bjork E. Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target. 2002;10(5):379-86.

  53. Thorne RG, Pronk GJ, PadmanabhanV, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481-496.

  54. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145-1148.

  55. Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A. 1996;93:14895-14900.

  56. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135:1127-1128.

  57. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124:319-335.

  58. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol. 1969;137:433-457.

  59. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993;11:173-189.

  60. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikellso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243-1249.

  61. Guerrero-Cazares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, Garcia-Verdugo JM, Quinones-Hinojosa A. Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol. 2011;519(6):1165-1180.

  62. Scranton RA, Fletcher L, Sprague S, Jimenez DF, Digicaylioglu M. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS. PLoS One. 2011;6(4):e18711.

  63. Baig AM. Designer's microglia with novel delivery system in neurodegenerative diseases. Med Hy-potheses. 2014;83:510.

  64. Baig AM. Emerging insights for better delivery of chemicals and stem cells to the brain. ACS Chem Neurosci. 2017;8:1119-1121.

  65. Majgainya S, Soni S, Bhat P. Novel approach for nose-to-brain drug delivery bypassing blood brain barrier by pressurized olfactory delivery device. J App Pharm. 2015;7(3):148-163.

  66. Kapoor M, Cloyd JC, Siegel RA. A review of intranasal formulations for the treatment of seizure emergencies. J Control Release. 2016;237:147-159.

  67. Homer JJ, Dowley AC, Condon L, El-Jassar P, Sood S. The effect of hypertonicity on nasal mucociliary clearance. Clin Otolaryngol. 2000;25:558-560.

  68. Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19-31.

  69. Kaur P, Garg T, Rath G, Goyal AK. In situ nasal gel drug delivery: A novel approach for brain targetingthrough the mucosal membrane. Artif Cells Nanomed Biotechnol. 2016;44(4):1167-1176.

  70. Drugs.com. Midazolam injection. [cited 2018 Jan 15]. Available from: http://www.drugs.com/pro/ midazolam-injection.html.

  71. Mcilwain M, Primosch R, Bimstein E. Allergic reaction to intranasal midazolam HCl: a case report. Pediatr Dent. 2004;26:359-361.

  72. Goyal G, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for treating glaucoma. Crit Rev Ther Drug Carrier Syst. 2014;31:365-405.

  73. Romeo VD, deMeireles J, Sileno AP, Pimplaskar HK, Behl CR. Effects of physicochemical properties and other factors on nasal drug delivery. Adv Drug Deliv Rev. 1998; 29(1-2):89-116.

  74. Agarwal P, Kumar A, Tanwar YS, Sharma S. Formulation and evaluation of nasal in situ gel of rizatriptan benzoate. J Drug Deliv Ther. 2017;6(2):39-49.

  75. Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv. 2016;23(2):550-563.

  76. Kumar M, Misra A, Mishra AK, Mishra P, Pathak K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target. 2008;16(10):806-814.

  77. Horvath T, Bartos C, Bocsik A, Kiss L, Veszelka S, Deli MA, Ujhelyi G, Szabo-Revesz P, Ambrus R. Cytotoxicity of different excipients on RPMI 2650 human nasal epithelial cells. Molecules. 2016;21:658.

  78. Misra A, Kher G. Drug delivery systems from nose-to-brain. Curr Pharm Biotechnol. 2012;13: 2355-2379.

  79. Lebe E, Baka M, Yavasoglu A, Aktug H, Ates U, Uyanikgil Y. Effects of preservatives in nasal formulations on the mucosal integrity:an electron microscopic study. Pharmacology. 2004;72(2): 113-120.

  80. Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004;130(1):131-141.

  81. Waterman KC, Adami RC, Alsante KM, Hong J, Landis MS, Lombardo F, Roberts CJ. Stabilization of pharmaceuticals to oxidative degradation. Pharm Dev Technol. 2002;7(1):1-32.

  82. Szabadka H. Clinical observations with Paxirasol nasal spray. Ther Hung. 1992;40(1):31-36.

  83. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263:1715-1720.

  84. Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier: an overview. Artif Cells Nanomed Biotechnol. 2016;44(1):135-143.

  85. Kumar M, Mishra A, Pathak K. Formulation and characterization nanoemulsion of olanzapine for intranasal delivery. PDA J Pharm Sci Technol. 2009;63:501-511.

  86. Parvathi M, Intranasal drug delivery to brain: an overview. Int J Res Pharm Chem. 2012;2(3): 889-895.

  87. El-Shafy MA, Kellaway IW, Taylor G, Dickinson PA. Improved nasal bioavailability of FITC dextran (MW 4300) from mucoadhesive microspheres in rabbits. J Drug Target. 2000;7(5):355-361.

  88. Yadav VK, Gupta AB, Kumar R, Yadav JS, Kumar B. Mucoadhesive polymers:means of improving the mucoadhesive properties of drug delivery system. J Chem Pharm Res. 2010;2:418-432.

  89. Singh AK, Singh A, Madhav NVS. Nasal cavity:a promising transmucosal platform for drug delivery and research approaches from nasal to brain targeting. J Drug Deliv Ther. 2012;2:22-33.

  90. Lim ST, Forbes B, Berry DJ, Martin GP, Brown MB. In vivo evaluation of novel hyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits. Int J Pharm. 2002;231(1):73-82.

  91. Muramatsu K, Maitani Y, Takayama K, Nagai T. The relationship between the rigidity of the liposomal membrane and the absorption of insulin after nasal administration of liposomes modified with an enhancer containing insulin in rabbits. Drug Dev Ind Pharm. 1999;25(10):1099-1105.

  92. Salatin S, Barar J, Barzegar-Jalali M, Adibkia Kh, Jelvehgari M. Thermosensitive in situ nanocomposite as an intranasal delivery system of rivastigmine hydrogen tartrate:development, characterization, ex vivo permeation and cellular studies. Colloids Surf B Biointerf. 2017;159:629-638.

  93. Wong LR, Ho PC. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: implications for the treatment of Alzheimer's disease. J Pharm Pharmacol. 2018;70(1):59-69.

  94. Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats:future potential contribution in Alzheimer's disease management. Drug Deliv. 2016;23(3):3111-3122.

  95. Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan na-noparticles as brain-targeted therapy in Alzheimer's disease:optimization, biological efficacy, and potential toxicity. J Pharma Sci. 2015;104:3544-3556.

  96. Liu Z, Jiang M, Kang T, Miao De, Gu G, Song Q, Yao L, Hu Q, Tu Y, Pang Z, Chen H, Jiang X, Chen XGJ. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 2013;34:3870-3881.

  97. Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, Catenacci L, Pietra AMD, Zecchi V. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug Tacrine. Eur J Pharm Sci. 2011;44:559-565.

  98. Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nanoparticles encapsulated tarenflurbil:A potential brain targeting strategy for Alzheimer's disease. Eur J Pharm Sci. 2016;92:224-234.

  99. Zhanga C, Chena J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm. 2014;461:192-202.

  100. Bhavna, Md S, Ali M, Ali R, Bhatnagar A, Baboota S, Ali J. Donepezil nanosuspension intended for nose-to-brain targeting:In vitro and in vivo safety evaluation. Int J Biol Macromol. 2014;67: 418-425.

  101. Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni J, Ali J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47:6-15.

  102. Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008;70:735-740.

  103. Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S, Jiang X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer's disease. Pharm Res. 2015;32(12): 3837-3849.

  104. Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of ace-tylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34:272-279.

  105. Asmari AKA, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of in-tranasally administered liposomal formulation of donepezil. Drug Des Dev Ther. 2016;10:205-215.

  106. El-Helaly SN, Elbary AA, Kassem MA, El-Nabarawi MA. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv. 2017;24(1):692-700.

  107. Kuo YC, Lin CY, Li JS, Lou YI. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer's disease treatment. Int J Nanomed. 2017;12:1757-1774.

  108. Corace G, Angeloni C, Malaguti M, Hrelia S, Stein PC, Brandl M, Gotti R, Luppi B. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J Liposome Res. 2014;24(4):323-335.

  109. Yang ZZ, Zhang YQQ, Wang ZZ, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharma. 2013;452(1-2):344-354.

  110. Wavikar P, Pai R, Vavia P. Nose-to-brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: enhanced brain distribution and pharmacodynamics. J Pharm Sci. 2017;106(12):3613-3622.

  111. Yang CR, Zhao XL, Hu HY, Li KX, Sun X, Li L, Chen DW. Preparation, optimization and characteristic of huperzine a loaded nanostructured lipid carriers. Chem Pharm Bull. 2010;58(5):656-661.

  112. Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, Giunchedi P, Gavini E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Colloids Surf B Biointerf. 2017;152:296-301.

  113. Shah B, Khunt D, Bhatt H, Misra M, H. Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci. 2015;78:54-66.

  114. Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery usingdesign of experiment and its toxicity assessment. Colloids Surf B Biointerf. 2014;113:330-337.

  115. Cimini A, D'Angelo B, Das S, Gentile R, Benedetti E, Singh V, Monaco AM, Santucci S, Seal S. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Ap aggregates modulate neuronal survival pathways. Acta Biomater. 2012;8:2056-2067.

  116. Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D. Microglial response to gold nanoparticles. ACS NANO. 2010;4(5):2595-2606.

  117. Lungare S, Hallam K, Badhan RK. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery. Int J Pharm. 2016;513(1-2):280-293.

  118. Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J, Vasavada S, Satpathy S, Wu S, Joshi H, Velasco PT, MacRenaris K, Waters EA, Lu C, Phan J, Lacor P, Prasad P, Dravid VP, Klein WL. Toward noninvasive diagnostic imaging of early-stage Alzheimer's disease. Nat Nanotechnol. 2015;10:91-98.

  119. Silva AC, Gonzalez-Mira E, Lobo JM, Amaral MH. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer's and schizophrenia. Curr Pharm Des. 2013;19(41):7185-7195.

  120. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166(2):182-194.

  121. Silva AC, Santos D, Ferreira DC, Souto EB. Advances in nanoparticulate carriers for oral delivery of peptides and proteins: polymeric vs. lipid nanoparticles. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology. Valencia, CA: American Scientific Publishers; 2011. p. 133-146.

  122. Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer's disease. Pharmacol Res. 2017;120:68-87.

  123. Vila A, Gill H, McCallion O, Alonso M. Transport of PLA-PEG particles across the nasal mucosa:effect of particle size and PEG coating density. J Control Release. 2004;98(2):231-244.

  124. Rocha S. Targeted drug delivery across the blood-brain barrier in Alzheimer's disease. Curr Pharm Des. 2013;19(37):6635-6646.

  125. Ali J, Ali M, Baboota S, Sahni JK, Ramassamy C, Dao L, Bhavna. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16(14):1644-1653.

  126. Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials. 2011;32:9888-9898.

  127. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerf. 2010;75(1):1-18.

  128. Wei XW, Guo G, Gong CY, Gou ML, Qian ZY. Biodegradable polymers: research and applications. In: Sharma SK, Mudhoo A, editors. A handbook of applied biopolymer technology: synthesis, degradation and applications, Green Chemistry Series. Cambridge, UK: RSC Publishing; 2011. p. 365-387. doi:10.1039/9781849733458.

  129. Siepmann J, Elkharraz K, Siepmann F, Klose D. How autocatalysis accelerates drug release from PLGA-based microparticles:a quantitative treatment. Biomacromolecules. 2005;6:2312-2319.

  130. Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm. 2014;461:192-202.

  131. Matsuho M, Kubota R, Asayama S, Kawakami H. Lactoferrin-modified nanoparticles loaded with potent antioxidant Mn-porphyrins exhibit enhanced antioxidative activity in vitro intranasal brain delivery model. J Mater Chem B. 2017;5:1765-1771.

  132. Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nano-particle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease. Eur J Pharm Sci. 2016;92:224-234.

  133. Park TG. Degradation of poly(D,L-lactic acid) microspheres:effect of molecular weight. J Control Release. 1994;30(2):161-173.

  134. Belbella A, Vauthier C, Fessi H, Devissaguet JP, Puisieux F. In vitro degradation of nanospheres from poly(D,L-lactides) of different molecular weights and polydispersities. Int J Pharm. 1996;129(1- 2):95-102.

  135. Makino K, Arakawa M, Kondo T. Preparation and in vitro degradation properties of polylactide microcapsules. Chem Pharm Bull. 1985;33(3):1195-1201.

  136. Vila A, Gill H, McCallion O, Alonso MJ. Transport of PLA-PEG particles across the nasal mucosa:effect of particle size and PEG coating density. J Control Release. 2004;98:231-244.

  137. Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials. 2011;32:9888-9898.

  138. You Y, Min BM, Lee SJ, Lee TS, Park WH. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci. 2004;95(2):193-200.

  139. Wang X, Wang Y, Wei K, Zhao N, Zhang S, Chen J. Drug distribution within poly(epsilon-caprolac-tone) microspheres and in vitro release. J Mat Proc Technol. 2009;209:348-354.

  140. Gorna K, Gogolewski S. In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on epsilon-caprolactone and pluronics with various hydrophilicities. Polym Degrad Stab. 2002;75(1):113-122.

  141. Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release. 2013;168(2):179-199.

  142. Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, Yao L, Hu Q, Tu Y, Pang Z, Chen H, Jiang X, Gao X, Chen J. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 2013;34:3870-3881.

  143. Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189-200.

  144. Sarvaiya J, Agrawal YK. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol. 2015;72:454-65.

  145. Martin-Lopez E, Nieto-Diaz M, Nieto-Sampedro M. Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-L-lysine films. J Biomater Appl. 2012;26: 791-809.

  146. Pangestuti R, Kim S. Neuroprotective properties of chitosan and its derivatives. Mar Drugs. 2010;8:2117-2128.

  147. Yuguang D, Peng W, Qingsong X, Yu L, inventors; Dalian Chemical Physics Institute, assignee. Application of chitosan oligosaccharide in preparation of medicament for preventing and/or treating neurodegenerative diseases. Chinese Patent CN20121106667. 2012.

  148. Liu H, Huang P, Ma P, Liu Q, Yu C, Du Y. Chitosan oligosaccharides suppress LPS-induced IL-8 ex-pression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases. Acta Pharmacol Cin. 2011;32:478-486.

  149. Muanprasat C, Yousef M, Pichyangkura R, Chatsudthipong V. Chitosan oligosaccharides ameliorate inflammation in two experimental models of colitis through inhibitions of intestinal epithelial cell NF-kB signaling and apoptosis. FASEB J. 2012;26:1107.5.

  150. Yin H, Du Y, Zhang J. Low molecular weight and oligomeric chitosans and their bioactivities. Curr Top Med Chem. 2009;16:1546-1559.

  151. Chung MJ, Park JK, Park YI. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int Immunop- harmacol. 2012;12:453-459.

  152. Byun H, Kim Y, Park P, Lin X, Kim S. Chitooligosaccharides as a novel P-secretase inhibitor. Carbohydr Polym. 2005;61:198-202.

  153. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3:203-230.

  154. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitins and its deacetylated derivatives. Biomaterials. 1997;18:567-575.

  155. Zhang H, Neau SH. In vitro degradation of chitosan by a commercial enzyme preparation:effect of molecular weight and degree of deacetylation. Biomaterials. 2001;22:1653-1658.

  156. Huang M, Khor E, Lim L. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21:344-353.

  157. Hirano S, Tsuchida H, Nagao N. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials. 1989;10:574-576.

  158. Sashiwa H, Saimoto H, Shigemasa Y, Ogawa R, Tokura S. Distribution of the acetamide group in partially deacetylated chitins. Carbohydr Polym. 1991;16:291-296.

  159. Kurita K, Kaji Y, Mori T, Nishiyama Y. Enzymatic degradation of [beta]-chitin:susceptibility and the influence of deacetylation. Carbohydr Polym. 2000;42:19-21.

  160. Schipper NG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res. 1996;13:1686-1692.

  161. Lehr CM, Bouwstra J, Schacht E, Junginger H. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43-48.

  162. He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166:75-88.

  163. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C. Chitosan and its salts for mucosal and transmucosal delivery. Expert Opin Drug Deliv. 2009;6:923-939.

  164. Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, Ali J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47:6-15.

  165. Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008;70:735-740.

  166. Hanafy AS, Farid RM, ElGamal SS. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer's disease management: preparation and detection in rat brain. Drug Dev Ind Pharm. 2015;41(12):2055-2068.

  167. Hanafy AS, Farid RM, Helmy MW, El Gamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats:future potential contribution in Alzheimer's disease management. Drug Deliv. 2016;23(8):1-12.

  168. Jain A, Gulbake A, Shilpi S, Jain A, Hurkat P, Jain SK. A new horizon in modifications of chitosan: syntheses and applications. Crit Rev Ther Drug Carrier Syst. 2013;30(2):91-181.

  169. Mei D, Mao S, Sun W, Wang Y, Kissel T. Effect of chitosan structure properties and molecular weight on the intranasal absorption of tetramethylpyrazine phosphate in rats. Eur J Pharm Biopharm. 2008;70:874-881.

  170. Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery:Therapeutic implications in Alzheimer's disease. Pharmacol Res. 2017;120:68-87.

  171. Hadavi D, Poot AA. Biomaterials for the treatment ofAlzheimer's disease. Front Bioeng Biotechnol. 2016;4(49):1-10.

  172. Zheng X, Shao X, C. Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S, Jiang X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer's disease. Pharm Res. 2015;32(12): 3837-3849.

  173. Asmari AK, Ullah Z, Tariq M, A. Fatani A. Preparation, characterization, and in vivo evaluation of in tranasally administered liposomal formulation of donepezil. Drug Des Dev Ther. 2016;10:205-215.

  174. El-Helaly SN, Elbary AA, Kassem MA, El-Nabarawi MA. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv. 2017;24(1):692-700.

  175. Gobbi M, Re F, Canovi M, Beeg M, Gregori M, Sesana S, Sonnino S, Brogioli D, Musicanti C, Gasco P, Salmona M, Masserini ME. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials. 2010; 31(25):6519-6529.

  176. Canovi M, Markoutsa E, Lazar AN, Pampalakis G, Clemente C, Re F, Sesana S, Masserini M, Salmona M, Duyckaerts C, Flores O, Gobi M, Antimisiaris SG. The binding affinity of anti-Abeta1-42 Mab-decorated nanoliposomes to Abeta1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials. 2011;32(23):5489-5497.

  177. Mourtas S, Canovi M, Zona C. Curcumin-decorated nanoliposomes with very high affinity for amyloid-P1-42 peptide. Biomaterials. 2011;32(6):1635-1645.

  178. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery: an overview. Acta Pharm Sin B. 2011;1:208-219.

  179. Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, Esposito S, Carafa M. Niosomes from 80s to present:the state of the art. Adv Colloid Interf Sci. 2014;205:187-206.

  180. Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci. 1979;1:303-314.

  181. Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34:945-953.

  182. Valdes K, Morilla MJ, Romero E, Chavez J. Physicochemical characterization and cytotoxicity studies of non-ionic surfactant vesicles using sucrose esters as oral drug delivery. Colloids Surf B. 2014;117:1-6.

  183. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, Abe M. Characterization of vesicles prepared with various non ionic surfactants mixed with cholesterol. Colloids Surf B Biointerfaces. 2003;30:129-138.

  184. Marzio LD, Marianecci C, Petrone M, Rinaldi F, Carafa M. Novel pH-sensitive non-ionic surfactant vesicles:comparison between Tween 21 and Tween 20. Colloids Surf B Biointerfaces. 2011;82:18-24.

  185. Ravouru N, Kondreddy P, Korakanchi D, Haritha M. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Discov Technol. 2013;10(4): 270-282.

  186. Salama HA, Mahmoud AA, Kamel AO, Hady MA, Awad GAS. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res. 2012;22(4):336-345.

  187. Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nano-vesicles for nanomedicine. Chem Soc Rev. 2016;45:6520-6545.

  188. Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67:283-290.

  189. Mouez MA, Nasr M, Abdel-Mottaleb M, Geneidi AS, Mansour S. Composite chitosan-transfersomal vesicles for improved transnasal permeation and bioavailability of verapamil. Int J Biol Macromol. 2016;93:591-599.

  190. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397:164-172.

  191. Aboud HM, Ali AA, El-Menshawe SF, Elbary AA. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Deliv. 2016;23(7):2471-2481.

  192. Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of ace-tylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34:272-279.

  193. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes: novel vesicular carriers for enhanced delivery:characterization and skin penetration properties. J Control Release. 2000;65:403-418.

  194. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res. 2010;1:274-282.

  195. Shelke S, Shahi S, Jadhav K, Dhamecha D, Tiwari R, Patil H. Thermoreversible nanoethosomal gel for the intranasal delivery of eletriptan hydrobromide. J Mater Sci Mater Med. 2016;27:103.

  196. Shelke S, Shahi S, Jalalpure S, Dhamecha D, Shengul S. Formulation and evaluation of thermoreversible mucoadhesive in situ gel for intranasal delivery of naratriptan hydrochloride. J Drug Deliv Sci Tech. 2015;29:238-244.

  197. Shelke S, Shahi S, Jalalpure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes:formulation, optimization, evaluation and permeation studies. J Liposome Res. 2016;26(4):313-323.

  198. Pandita A, Sharma P. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm. 2013;2013:348186.

  199. Semalty A, Semalty M, Rawat BS, Singh D, Rawat MSM. Pharmacosomes: the lipi-based new drug delivery system. Expert Opin Drug Deliv. 2009;6:599-612.

  200. Shivanand P, Kinjal PR. Phytosomes: technical revolution in phytomedicine. Int J Pharm Tech Res. 2010;2:627-631.

  201. Sharma M, Meshram N. Recent advancement in phytosomes: An emerging technology in the field of pharmacognostical research. Int J Nanomater Nanotechnol Nanomed. 2015;S128.

  202. Semalty A, Semalty M, Singh D, Rawat MSM. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharm. 2009;59:335-344.

  203. Han M, Chen J, Chen S, Wang X, Zazhi ZZ. Preparation and study in vitro of 20 (S)-protopanaxadiol pharmacosomes. China J Chinese Materia Medica. 2010;35(7):842-846.

  204. Vaizoglu MO, Speiser PP. Pharmacosomes: A novel drug delivery system. Acta Pharm Suec. 1986;23:163-172.

  205. Semalty A, Semalty M, Rawat BS, Singh D, Rawat MSM. Pharmacosomes: the lipid-based new drug delivery system. Expert Opin Drug Deliv. 2009;6(6):599-612.

  206. Dolatabadi JEN, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5:151-159.

  207. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipidnanoparticles in brain targeting. J Control Release. 2008;127:97-109.

  208. Lauzon MA, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release. 2015;206:187-205.

  209. Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, Giunchedi P, Gavini E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipidnanoparticles for Alzheimer's therapy. Colloids Surf B Biointerfaces. 2017;152:296-301.

  210. Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci.. 2015;78:54-66.

  211. Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364-389.

  212. Sood S, Jain K, Gowthamarajan K. Curcumin-donepezil-loaded nanostructured lipid carriers for intranasal delivery in an Alzheimer's disease model. Alzheimers Dement. 2013;9(4):P299.

  213. Gartziandia O, Herran E, Pedraz JL, Carro E, Igartua M, Hernandez RM. Chitosan-coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces. 2015;134:304-313.

  214. Gabal YM, Kamel AO, Sammour OA, Elshafeey AH. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm. 2014;473:442-457.

  215. Silva A, Gonzalez-Mira E, Lobo JM, Amaral MH. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer's and schizophrenia. Curr Pharm Des. 2013;19(41):7185-7195.

  216. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16(7-8):354-360.

  217. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198-214.

  218. Silva AC, Santos D, Ferreira D, Lopes CM. Lipid-based nanocarriers as an alternative for oral delivery of poorly water-soluble drugs:peroral and mucosal routes Curr Med Chem. 2012; 19(26): 4495-4510.

  219. Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose-to-brain delivery. Drug Deliv. 2016;23(4):1444-1452.

  220. Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B Biointerfaces. 2014;113: 330-337.

  221. Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, Xia F, Dong X, Zhao W, Lu Y, Wu W. Evidence of nose-to-brain delivery of nanoemulsions:cargoes but not vehicles. Nanoscale. 2017;9(3):1174-1183.

  222. Martin-Rapun R, Matteis LD, Ambrosone A, Garcia-Embidb S, Gutierrez L, de la Fuente JM. Targeted nanoparticles for the treatment of Alzheimer's disease. Curr Pharma Design. 2017;23: 1927-1952.

  223. Lauzon MA, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release. 2015;206:187-205.

  224. De M, Chou SS, Joshi HM, Dravid VP. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv Drug Deliv Rev. 2011;63:1282-1299.

  225. Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J, Vasavada S, Satpathy S, Wu S, Joshi H, Velasco PT, MacRenaris K, Waters EA, Lu C, Phan J, Lacor P, Prasad P, Dravid VP, Klein WL. Toward noninvasive diagnostic imaging of early-stage Alzheimer's disease. Nat Nanotechnol. 2015;10:91-98.

  226. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165-1170.

  227. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706-8715.

  228. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP. Shape control of CdSe nanocrystals. Nature. 2000; 404(6773):59-61.

  229. Corot C, Port M, Guilbert I, Robert P, Raynal I, Robic C, Raynaud JS, Prigent P, Dencausse A, Idee JM. Superparamagnetic contrast agents. In: Modo MMJ, Bulte JWM, editors. Molecular and cellular MR imaging. Boca Raton, FL: CRC Press; 2007, p. 59-84.

  230. Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly-(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61:749-761.

  231. Stolnik S, Dunn SE, Garnett MC, Davies MC, Coombes AGA, Taylor DC, Irving MP, Purkiss SC, Tadros TF, Davis S, Illum L. Surface modification of poly(lactide-co-glycolide) nanoparticles by biodegradable poly(lactide)-poly(ethylene glycol) copolymer. Pharm Res. 1994;11:1800-1808.

  232. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7:144.

  233. Liu S, Jia B, Qiao R, Yang Z, Yu Z, Liu K, Shi J, Ouyang H, Wang F, Gao M. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor:preparation, characterization and in vivo application. Mol Pharmaceut. 2009;6(4):1074-1082.

  234. Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell WS, Robson MD, Ansorge O, Khrapitchev A, Bristow C, Balathasan L, Weissensteiner T, Anthony DC, Choudhary RP, Muschel RJ, Sibson NR. Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci U S A. 2012; 109(17):6674-6679.

  235. Xiao C, Davis FJ, B.C. Chauhan BC, Viola KL, Lacor PN, Velasco PT, Klein WL, Chauhan NB. Brain transit and ameliorative effects of intranasally delivered anti-amyloid-p oligomer antibody in 5XFAD mice. J Alzheimers Dis. 2013;35(4):777-788.

  236. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021.

  237. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Magnetic ironoxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064-2110.

  238. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3:397-415.

  239. Zhang L, Dou YH, Gu HC. Sterically induced shape control of magnetite nanoparticles. J Crystal Growth. 2006;296(2):221-226.

  240. Wahajuddin S. Arora, Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. 2012;7:3445-3471.

  241. Mahmoudi M, Simchi A, Milani AS, Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2009;336(2):510-518.

  242. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul. 1996;13(3):245-255.

  243. Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience. 2004;3(1):66-73.

  244. Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials. 2005;26(13):1565-1573.

  245. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284-304.

  246. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3): 214-221.

  247. Wadghiri YZ, Li J, Wang J, Hoang DM, Sun Y, Xu H, Tsui W, Li Y, Boutajangout A, Wang A, de Leon M, Wisniewski T. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging, PLoS One. 2013;8(2):e57097.

  248. Yang J, Wadghiri YZ, Hoang DM, Tsui W, Sun Y, Chung E, Li Y, Wang A, de Leon M, Wisniewski T. Detection of amyloid plaques targeted by USPIO-AP1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging. Neuroimage. 2011;55:1600-1609.

  249. Skaat H, Corem-Slakmon E, Grinberg I, Last D, Goez D, Mardor Y, Margel S. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-P fibrils. Int J Nanomed. 2013;8:4063-4076.

  250. Gao W, Xu K, Ji L, Tang B. Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells. Toxicol Lett. 2011;205(1):86-95.

  251. Yguerabide J, Yguerabide EE. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J Cell Biochem. 2001;84:71-81.

  252. El-Sayed IH, Huang XH, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody-conjugated gold nanoparticles in cancer diagnostics: Applications in oral caner. Nano Lett. 2005;5:829-834.

  253. Imura K, Nagahara T, Okamoto H. Plasmon mode imaging of single gold nanorods. J Am Chem Soc. 2004;126:12730-12731.

  254. Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639-1644.

  255. Hayat MA. Colloidal gold: principles, methods and applications. 1st ed. San Diego: Academic Press; 1989.

  256. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photother- mal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41:1578-1586.

  257. Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20:6414-6420.

  258. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957-1962.

  259. Bakr OM, Wunsch BH, Stellacci F. High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater. 2006;18:3297-3301.

  260. Lu LH, Ai K, Ozaki Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir. 2008;24:1058-1063.

  261. Yu KF, Kelly KL, Sakai N, Tatsuma T. Morphologies and surface plasmon resonance properties of monodisperse bumpy gold nanoparticles. Langmuir. 2008;24:5849-5854.

  262. Millstone JE, Metraux GS, Mirkin CA. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater. 2006;16:1209-1214.

  263. Lu XM, Yavuz MS, Tuan HY, Korgel BA, Xia YN. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine AuCl complexes formed via aurophilic interaction. J Am Chem Soc. 2008;130:8900-8901.

  264. Shen ZR, Miyabayashi K, Higashimoto M, Shimoda T, Miyake M. Single-crystalline gold nanodisks prepared by the shape transformation under UV irradiation from nanoparticles protected with discotic liquid crystalline ligands. Chem Lett. 2008;37:1276-1277.

  265. Khoury CG, Vo-Dinh T. Gold nanostars for surfaceenhanced raman scattering: synthesis, characteri-zation and optimization. J Phys Chem C. 2008;112:18849-18859.

  266. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM. Highyield synthesis and optical response of gold nanostars. Nanotechnology. 2008;19:015606.

  267. Alkilany AM, Pratik KN, Cole RH, Timothy JS, Catherine JM, Michael DW. Cellular uptake and cyto-toxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009;5:701-708.

  268. Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7:1542-1550.

  269. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662-668.

  270. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912-1919.

  271. Semmler-Behnke M, Kreyling, WG Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4:2108-2111.

  272. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941-1949.

  273. Hung-Jen Y, Shan-hui H, Ching-Lin T. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small. 2009;5:1553-1561.

  274. Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639-1644.

  275. Au L, Zhang Q, Cobley CM, Gidding M, Schwartz AG, Chen J, Xia Y. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano. 2009;4:35-42.

  276. Hutter E, Boridy S, Labrecque S, Lalancette-He bert M, Kriz J, Winnik FM, Maysinger D. Microglial response to gold nanoparticles. ACS Nano. 2010;4(5):2595-2606.

  277. Glazer ES, Zhu C, Hamir AN, Borne A, Thompson CS, Curley SA. Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology. 2011;5(4):459-468.

  278. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4(12):2108-2211.

  279. Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-p fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small. 2012;8(23):3631-3639.

  280. Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, Kalluri JR, Ray PC. Ultrasensitive and highly selective detection of Alzheimer's disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano. 2009;3(9):2834-2840.

  281. Hsieh S, Chang C, Chou H. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors. Colloids Surf B Biointerfaces. 2013;112:525-529.

  282. Araya E, Olmedo I, Bastus NG, Guerrero S, Puntes VF, Giralt E, Kogan MJ. Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Res Lett. 2008;3:435-443.

  283. Mirsadeghi S, Dinarvand R, Ghahremani MH, Hormozi-Nezhad MR, Mahmoudi Z, Hajipour MJ, Atyabi F, Ghavami M, Mahmoudi M. Protein corona composition of gold nanoparticles/nanorods affects amyloid-beta fibrillation process. Nanoscale. 2015;7:5004-5013.

  284. Shirshahi V, Soltani M. Solid silica NPs: applications in molecular imaging. Contrast Media Mol Imaging. 2015;10:1-17.

  285. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N. Application of silica NPs in maize to enhance fungal resistance. Nanobiotechnology. 2014;8(3):133-137.

  286. Singh LP, Bhattacharyya SK, Kumar R. Sol-gel processing of silica NPs and their applications. Adv Colloid Interf Sci. 2014;214:17-37.

  287. Yang X, He C, Li J, Chen H, Ma Q, Sui X, Tian S, Ying M, Zhang Q, Luo Y, Zhuang Z, Liu J. Uptake of silica nanoparticles:Neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett. 2014;229(1):240-249.

  288. Karimzadeh M, Rashidi L, Ganji F. Mesoporous silica nanoparticles for efficient rivastig- mine hydrogen tartrate delivery into SY5Y cells. Drug Develop Industrial Pharm. 2017;43(4): 628-638.

  289. Lungare S, Hallam K, Badhan RK. Phytochemical-loaded mesoporous silica nanoparticles for nose- to-brain olfactory drug delivery. Int J Pharm. 2016;513(1-2):280-293.

  290. Yang Y, Yu Y, Wang J, Li Y, Li Y, Wei J, Zheng T, Jin M, Sun Z. Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. Environ Toxicol Pharmacol. 2017;52:161-169.

  291. Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease. Acta Biomater. 2015;25:172-183.

  292. Schweizer U, Brauer AU, Kohrle J, Nitsch R, Savaskan NE. Selenium and brain function, a poorly recognized liaison. Brain Res Brain Res Rev. 2004;45:164-178.

  293. Takemoto AS, Berry MJ, Bellinger FP. Role of selenoprotein P in Alzheimer's disease. Ethn Dis. 2010;20(1 Suppl 1):S1-92-5.

  294. Zhang ZH, Chen C, Wu QY, Zheng R, Chen Y, Liu Q, Ni JZ, Song GL. Selenomethionine ameliorates neuropathology in the olfactory bulb of a triple transgenic mouse model of Alzheimer's disease. Int J Mol Sci. 2016;17:1595.

  295. Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer's disease:an update of selected antioxidants. Expert Rev Neurother. 2015;15(1):19-40.

  296. Estevez AY, Erlichman JS. Cerium oxide nanoparticles for the treatment of neurological oxidative stress diseases, In: Andreescu ES, Hempel M, editors. Oxidative stress: diagnostics, prevention and therapy. Washington, DC: American Chemical Society; 2011; p. 255-288.

  297. Estevez AY, Erlichman JS. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine (Lond). 2014;9(10):1437-1440.

  298. Das S, Dowding JM, Klump KE, McGinnis JF, SelfW, Seal S. Cerium oxide nanoparticles:applications and prospects in nanomedicine. Nanomedicine (Lond). 2013;8(9):1483-1508.

  299. Heckman KL, DeCoteau W, Estevez A. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013;7(12):10582-10596.

  300. Singh N, Amateis E, Mahaney JE, Meehan K, Rzigalinski BA. The antioxidant activity of cerium oxide nanoparticles is size dependent and blocks Ap1-42-induced free radical production and neurotoxicity. FASEB J. 2008;22(1):624.2.

  301. Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chem Soc Rev. 2010;39:4422-4432.

  302. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411-1420.

  303. Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SV, Wozniak K, Self WT, Seal S. Pegylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc. 2009;131: 14144-14145.

  304. Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano. 2016;10(2):2860-2870.

  305. D'Angelo B, Santucci S, Benedetti E, Di Loreto S, Phani RA, Falone S, Amicarelli F, Ceru MP, Cimini A. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci. 2009;5:167-176.

  306. Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, Bossy B, Seal S, Ellisman MH, Perkins G, Self WT, Bossy-Wetzel E. Cerium oxide nanoparticles protect against Ab-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014;21:1622-1632.

  307. Cimini A, D'Angelo B, Das S, Gentile R, Benedetti E, Singh V, Monaco AM, Santucci S, Seal S. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Ab aggregates modulate neuronal survival pathways. Acta Biomater. 2012;8:2056-2067.

  308. Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol. 2013;4:140.

  309. Posadas I, Monteagudo S, Cena V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine. 2016;11(7):833-849.

  310. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759-1762.

  311. Yong KT, Wang Y, Roy I, Rui H, Swihart MT, Law WC. Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics. 2012;2:681-694.

  312. Zhou J, Yang Y, Zhang CY. Toward biocompatible semiconductorquantum dots:from biosynthesis and bioconjugation to biomedicalapplication. Chem Rev. 2015;115:11669-11717.

  313. Gao X, Chen J, Chen J, Wu B, Chen H, X. Jiang X. Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjugate Chem. 2008;19:2189-2195.

  314. Li F, Shuyu L, Bo X, Si C, Renkai L, Yong Z. Fluorescence imaging of APP in Alzheimer's disease with quantum dot or Cy3: a comparative study. J Cent South Univ (Med Sci). 2010;35(9):903-909.

  315. Tokuraku K, Marquardt M, Ikezu T. Real-time imaging and quantification of amyloid-b peptide aggregates by novel quantum dot nanoprobes. PLoS One. 2009;4(12):e8492.

  316. Gupta S, Babu P, Surolia A. Biphenyl ethers conjugated CdSe/ZnS core/shell quantum dots and in-terpretation of the mechanism of amyloid fibril disruption. Biomaterials. 2010;31:6809-6822.

  317. Getz T, Qin J, Medintz IL, Delehanty JB, Susumu K, Dawson PE, Dawson G. Quantum dot-mediated delivery of siRNA to inhibit sphingomyelinase activites in brain-derived cells. J Neurochem. 2016;139(5):872-885.

  318. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56-58.

  319. Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4(10):627-633.

  320. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun. 2005;7(5):571-577.

  321. Wang JT, Al-Jamal KT. Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine (Lond). 2015;10(17):2639-2642.

  322. Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer's potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharmaceut. 2017;530:263-278.

  323. Lisi S, Scarano S, Fedeli S, Pascale E, Cicchi S, Ravelet C, Peyrin E, Minunni M. Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructu- res as signal amplifiers. Biosens Bioelectron. 2017;93:289-292.

  324. Zhang L, Liu F, Sun X, Wei G, Tian Y, Liu ZP, Huang R, Yu Y, Peng H. Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of Alzheimer's disease. Anal Chem. 2017;89(3):1831-1837.

  325. Xue X, Wang L, Sato Y, Jiang Y, Berg M, Yang D, Nixon R, Liang X. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease. Nano Lett. 2014;14(9):5110-5117.

  326. Mansoori GA. Principles of nanotechnology: molecular-based study of condensed matter in small systems. Singapore: World Scientific Publishing Co.; 2005.

  327. Jain KK. The role of nanobiotechnology in drug discovery. Drug Discov Today. 2005; 10(21): 1435-1442.

  328. Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O'Malley KL. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord. 2001;7(3):243-246.

  329. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A. 1997;94(17):9434-9439.

  330. Podolski IY, Podlubnaya ZA, Kosenko EA, Mugantseva EA, Makarova EG, Marsagishvili LG, Shpagina MD, Kaminsky YG, Andrievsky GV, Klochkov VK. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol. 2007;7(4-5):1479-1485.

  331. Vorobyov V, Kaptsov V, Gordon R, Makarova E, Podolski I, Sengpiel F. Neuroprotective effects of hydrated fullerene C60: cortical and hippocampal EEG interplay in an amyloid-infused rat model of Alzheimer's disease. J Alzheimers Dis. 2015;45:217-233.

  332. Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's b-amyloid peptide fragment. Nanoscale. 2014;6(16):9752-9762.

  333. Chonkar A, Nayak U, Udupa N. Smart polymers in nasal drug delivery. Ind J Pharm Sci. 2015;77(4):367-375.

  334. Basu S, Bandyopadhyay AK. Development and characterization of mucoadhesive in situ nasal gel of midazolam prepared with Ficus carica mucilage. AAPS PharmSciTech. 2010;11:1223-1231.

  335. Pund S, Rasve G, Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur J Pharm Sci. 2013;48:195-201.

  336. Bhalerao AV, Lonkar SL, Deshkar SS, Shirolkar SV, Deshpande AD. Nasal mucoadhesive in situ gel of ondransetron hydrochloride. Ind J Pharm Sci. 2009;71:711-713.

  337. Mahajan HS. Thermally reversible xyloglucan gels as vehicles for nasal drug deliver. Drug Deliv. 2012;19:270-276.

  338. Mahajan HS. Thiolated xyloglucan: synthesis, characterization and evaluation as mucoadhesive in situ gelling agent. Carbohydr Polym. 2013;91:618-625.

  339. Nazar H. Thermosensitive hydrogels for nasal drug delivery: the formulation and characterization of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm. 2011;77:225-232.

  340. Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today. 2016;21(1):157-166.

  341. Grasdalen H, Smidsroed O. Gelation of gellan gum. Carbohydr Polym. 1987;7:371-393.

  342. Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes: future perspectives. Int J Pharm. 2013;440:48-62.

  343. Colombo P, Sonvico F, Colombo G, Bettini R. Novel platforms for oral drug delivery. Pharm Res. 2009;26:601-611.

  344. Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z. pH sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nano- med Nanobiotechnol. 2016;8(5):696-716.

  345. Yoshida T, Lai TC, Kwon GS, Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10:497-513.

  346. Balamuralidhara V, Pramodkumar TM, Srujana N, Venkatesh MP, Gupta NV, Krishna KL. pH sensitive drug delivery systems: a review. Am J Drug Discov Dev. 2011;1:24-48.

  347. Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci. 1999;88(9):933-937.

  348. Peppas NA. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm. 2004;277:11-17.

  349. Kun N, Bae YH. pH sensitive polymers for drug delivery. In: Kwon GS, editor. Polymeric drug delivery systems. New York: Marcel Dekker; 2005. p. 129-194.

  350. Nakamura K, Maitani Y, Lowman AM, Takayama K, Peppas NA, Nagai T. Uptake and release of budesonide from mucoadhesive, pH-sensitive copolymers and their application to nasal delivery. J Control Release. 1999;61:329-335.

  351. Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14:3754-3779.

  352. Wearly LL. Recent progress in protein and peptide delivery by noninvasive routes. Crit Rev Ther Drug Carrier Syst. 1991;8:331-394.

  353. Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16:59-65.

  354. Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008;58(5):708-719.

  355. Zhao WQ, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta. 2009;1792(5):482-496.

  356. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment. Arch Neurol. 2012;69(1):29-38.

  357. Francis GJ, Martinez JA, Liu WQ. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain. 2008;131(12):3311-3334.

  358. Critical Pharmaceuticals. Criticalsorb absorption promoter. Accessed 2018 Jan 31. Available from: http://www.criticalpharmaceuticals.com/ technology/criticalsorb.

  359. ClinicalTrials.gov [homepage on the Internet]. Study of nasal insulin to fight forgetfulness: long-acting insulin detemir 120 Days (SL120) (SL120). Accessed 2018 Jan 29. Available from: https:// clinicaltrials.gov/ct2/show/NCT01595646?term=NCT01595646&rank.

  360. Chen Y, Guo Z, Mao YF, Zheng T, Zhang B. Intranasal insulin ameliorates cerebral hypometabo-lism, neuronal loss, and astrogliosis in streptozotocin-induced Alzheimer's rat model. Neurotox Res. 2018;33(4):716-724.

  361. Rhea EM, Humann SR, Nirkhe S, Farr SA, Morley JE, Banks WA. Intranasal insulin transport is preserved in aged SAMP8 Mice and is altered by albumin and insulin receptor inhibition. J Alzheimer's Disease. 2017;57:241-252.

  362. Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improves performance in a water maze. J Pharmacol Exp Ther. 2000;293:1091-1098.

  363. Alcalay RN, Giladi E, Pick CG, Gozes I. Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett. 2004;361:128-131.

  364. Matsuoka Y, Gray AJ, Hirata-Fukae C, Minami SS, Waterhouse EG, Mattson MP, LaFerla FM, Gozes I, Aisen PS. Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J Mol Neurosci. 2007;31:165-170.

  365. Shiryaev N, Jouroukhin Y, Giladi E, Polyzoidou E, Grigoriadis NC, Rosenmann H, Gozes I. NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol Dis. 2009;34:381-388.

  366. Gozes I, Divinski I. The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J Alzheimers Dis. 2004;6:S37-S41.

  367. Vulih-Shultzman I, Pinhasov A, Mandel S, Grigoriadis N, Touloumi O, Pittel Z, Gozes I. Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharmacol Exp Ther. 2007;323:438-449.

  368. Sharma NK, Sethy NK, Meena RN, Ilavazhagan G, Das M, Bhargava K. Activity-dependent neuro-protective protein (ADNP)-derived peptide (NAP) ameliorates hypobaric hypoxia induced oxidative stress in rat brain. Peptides. 2011;32(6):1217-1224.

  369. Chang ES, Liao TY, Lim TS, Fann W, Chen RP. A new amyloid-like-aggregate with most of the amyloid characteristics except fibril morphology. J Mol Biol. 2009;385:1257-1265.

  370. Lin CY, Cheng YS, Liao TY, Lin C, Chen ZT, Twu WI, Chang CW, Tan DTW, Liu RS, Tu PH, Chen RPY. Intranasal administration of a polyethylenimine-conjugated scavenger peptide reduces amyloid accumulation in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2016;53:1053-1067.

  371. Cheng Y, Chen Z, Liao T, Lin C, Shen HC. An intranasally delivered peptide drug ameliorates the cognitive decline in Alzheimer transgenic mice. EMBO Mol Med. 2017;9:703-715.

  372. Ji R, Meng L, Yang R. Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide. Int J Adv Innov Thoughts Ideas. 2014;3(1):156.

  373. Vaudry D, Pamantung TF, Basille M, Rousselle C, Fournier A. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J Neurosci. 2002;15:1451-1460.

  374. Vaudry D, Falluel-Morel A, Basille M, Pamantung TF, Fontaine M. Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. J Neurosci Res. 2003;72:303-316.

  375. Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K. The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides. 2002;23:1471-1478.

  376. Morio H, Tatsuno I, Hirai A, Tamura Y, Saito Y. Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 1996;741: 82-88.

  377. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M. The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci U S A. 2000;97: 13390-13395.

  378. Frechilla D, Garcia-Osta A, Palacios S, Cenarruzabeitia E, Del Rio J. BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport. 2001;12:919-923.

  379. Shioda S, Ozawa H, Dohi K, Mizushima H, Matsumoto K. PACAP protects hippocampal neurons against apoptosis: involvement of JNK/SAPK signaling pathway. Ann N Y Acad Sci. 1998;865: 111-117.

  380. Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, Postina R, Van Leuven F, Fahrenholz F, Kojro E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FA-SEB J. 2011;25:3208-3218.

  381. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614-628.

  382. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267: 14998-15004.

  383. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 1992;267:14987-14997.

  384. New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 1998;17:3372-3384.

  385. Hefner Y, Borsch-HauboldAG, Murakami M, Wilde JI, Pasquet S, Schieltz D. Serine 727 phosphory-lation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem. 2000;275:37542-37551.

  386. Toska K, Kleppe R, Armstrong CG, Morrice NA, Cohen P, Haavik J. Regulation of tyrosine hydroxylase by stress-activated protein kinases. J Neurochem. 2002;83:775-783.

  387. Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell. 2011;41:445-457.

  388. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63:610-615.

  389. Shiryaev A, Kostenko S, Dumitriu G, Moens U. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem. 2012;3:98-109.

  390. Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R. PRAK is essential for ras-induced senescence and tumor suppression. Cell. 2007;128:295-308.

  391. New L, Jiang Y, Han J. Regulation of PRAK subcellular location by p38 MAP kinases. Mol Biol Cell. 2003;14:2603-2616.

  392. Kim Y, Kim C, Son SM, Song H, Hong HS, Han S. Mook-Jung I. The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer's disease pathogenesis. Mol Neurodegener. 2016;11:4.

  393. Rangasamy SB, Corbett GT, Roy A, Modi KK, Bennett DA. Intranasal delivery of NEMO-binding domain peptide prevents memory loss in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2015;47:385-402.

  394. Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces Tau pathology and enhances cognitive function in a mouse model of Alzheimer's disease. J Pharmacol Exp Ther. 2008;325:146-153.

  395. Furrer E, Hulmann V, Urech DM. Intranasal delivery of ESBA105, a TNF-alphainhibitory scFv antibody fragment to the brain. J Neuroimmunol. 2009;215:65-72.

  396. Yadav S, Gattacceca F, Panicucci R, Amiji MM. Comparative biodistribution and pharmacokinetic analysis of cyclosporine-A in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Mol Pharm. 2015;12:1523-1533.

  397. Sipos E, Kurunczi A, Feher A. Intranasal delivery of human b-amyloid peptide in rats: Effective brain targeting. Cell Mol Neurobiol. 2010;30:405-413.

  398. Zheng X, Shao X, Zhang C. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer's disease. Pharm Res. 2015;32:3837-3849.

  399. Shaw P, Zhang X. Intranasal delivery of a cystatin C-peptide as therapy for Alzheimer's disease. J Fed Am Soc Exp Biol. 2013;27(1):533.

  400. Alcala-Barraza SR, Lee MS, Hanson LR. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Drug Target. 2010;18:179-190.

  401. Yang JP, Liu HJ, Cheng SM. Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett. 2009;449:108-111.

  402. Yang JP, Liu HJ, Wang ZL. The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neurosci Lett. 2009;461:212-216.

  403. Yu S, inventor. Method of treating dementia by intranasal administration of vegf gene therapy. WO Patent WO2016069760A1. 2014 Oct 31.

  404. Niikura T, Sidahmed E, Hirata-Fukae C, Aisen PS, Matsuoka Y. A humanin derivative reduces amyloid-beta accumulation and ameliorates memory deficit in triple transgenic mice. PLoS One. 2011;6:1-12.

  405. Wu H, Li J, Zhang Q. A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-b 25-35-treated rats following intranasal administration. Eur J Pharm Biopharm. 2012;80:368-378.

  406. Vaka SRK, Murthy SN, Balaji A, Repka MA. Delivery of brain-derived neurotrophic factor via nose-to-brain pathway. Pharm Res. 2012;29:441-447.

  407. Alcala-Barraza SR, Lee MS, Hanson LR. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Drug Target. 2010;18:179-190.

  408. Chen H, Yang GZX, Getachew H, Acosta C, Sierra Sanchez C, Konofagou EE. Focused ultrasound- enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci Rep. 2016;6:28599.

  409. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127:481-496.

  410. Fletcher L, Kohli S, Sprague SM. Intranasal delivery of erythropoietin plus insulin-like growth factor I for acute neuroprotection in stroke: Laboratory investigation. J Neurosurg. 2009;111:164-170.

  411. Liu XF, Fawcett JR, Hanson LR, Frey WH. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor I in rats. J Stroke Cerebrovasc Dis. 2004;13:16-23.

  412. Cai Z, Fan LW, Lin S, Pang Y, Rhodes PG. Intranasal administration of IGF-1 protects against lipo-polysaccharide-induced injury in the developing rat brain. Neuroscience. 2011;194:195-207.

  413. Lopes C, Ribeiro M, Duarte AI. IGF-1 intranasal administration rescues Huntington's disease pheno-types in YAC128 mice. Mol Neurobiol. 2014;49:1126-1142.

  414. Gartziandia O, Herran E, Pedraz JL, Carro E, Igartua M, Hernandez RM. Chitosan-coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces. 2015;134:304-313.

  415. Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm. 2003;255:87-97.

  416. Gozes I, Bardea A, Reshef A. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci U S A. 1996;93:427-432.

  417. Gao X, Wu B, Zhang Q. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121:156-167.

  418. Cui X, Cao DY, Wang ZM, Zheng AP. Pharmacodynamics and toxicity of vasoactive intestinal peptide for intranasal administration. Pharmazie. 2013;68:69-74.

  419. Frey WH II, Liu J, Chen X. Intranasal delivery of 125 I-NGF to the brain via the olfactory rout. In: Iqbal K, Mortimer JA, Winblad B, Wisniewski HM, editors. Research advances in Alzheimer's disease and related disorders. New York: John Wiley; 1995; p. 329-335.

  420. Frey WH II, Liu J, Chen X. Delivery of 125I-NGF to the brain via the olfactory route. Drug Deliv. 1997;4:87-92.

  421. Chen XQ, Fawcett JR, Rahman YE, Ala T, Frey WH II. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis. 1998;1:35-44.

  422. Vaka SRK, Sammeta SM, Day LB, Murthy SN. Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptake. J Pharm Sci. 2009;98:3640-3646.

  423. De Rosa R, Garcia AA, Braschi C. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A. 2005;102:3811-3816.

  424. Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A. Development of a non invasive NGF-based therapy for Alzheimer' s disease. Curr Alzheimer Res. 2009;6:158-170.

  425. Zhu W, Cheng S, Xu G. Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Deliv. 2011;18:338-343.

  426. Tian L, Guo R, Yue X. Intranasal administration of nerve growth factor ameliorate b-amyloid deposition after traumatic brain injury in rats. Brain Res. 2012;1440:47-55.

  427. Capsoni S, Marinelli S, Ceci M. Intranasal 'painless' human nerve growth factors slows amyloid neurodegeneration and prevents memory deficits in app x PS1 mice. PLoS One. 2012;7(5):e37555.

  428. Lv Q, Fan X, Xu G. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res. 2013;1493:80-89.

  429. Maurice T, Mustafa MH, Desrumaux C. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Ab25-35 non-transgenic mouse model of Alzheimer's disease. J Psychopharmacol. 2013;27:1044-1057.

  430. Rodriguez Cruz Y, Strehaiano M, Rodriguez Obaya T, Garcia Rodriguez JC, Maurice T. An intranasal formulation of erythropoietin (neuro-EPO) prevents memory deficits and amyloid toxicity in the APP (Swe) transgenic mouse model of Alzheimer's disease. J Alzheimers Dis. 2017;55:231-248.

  431. Chauhan MB, Chauhan NB. Brain uptake of neurotherapeutics after intranasal versus intraperitoneal delivery in mice. J Neurol Neurosurg. 2015;2:2-9.

  432. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29: 6734-6751.

  433. Yang J, Lu L, Wang HC. Effect of intranasal arginine vasopressin on human headache. Peptides. 2012;38:100-104.

  434. Yang Y, Ma D, Wang Y. Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis. 2013;33:329-338.

  435. Maimaiti S, Anderson KL, DeMoll C. Intranasal insulin improves age-related cognitive deficits and reverses electrophysiological correlates of brain aging. J Gerontol A Biol Sci Med Sci. 2015;71:30-39.

  436. Zhang Y, Dai CL, Chen Y, Iqbal K, Liu F, Gong CX. Intranasal insulin prevents anesthesia-induced spatial learning and memory deficit in mice. Sci Rep. 2016;6:21186.

  437. Rajasekar N, Nath C, Hanif K, Shukla R. Intranasal insulin exerts beneficial effects by improving cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV) induced memory-impaired rats. Life Sci. 2016;173:1-10.

  438. Pang Y, Lin S, Wright C. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157-165.

  439. Rhea EM, Humann SR, Nirkhe S, Farr SA, Morley JE, Banks WA. Intranasal insulin transport is preserved in aged SAMP8 mice and is altered by albumin and insulin receptor inhibition. J Alzheimers Dis. 2017;57:241-252.

  440. Guo Z, Chen Y, Mao YF. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer's rat model. Sci Rep. 2017;7:45971.

  441. Sanchez-Ramos J, Song S, Kong X, Foroutan P, Martinez G, Dominguez-Viqueria W, Mohapatra S, Mohapatra S, Haraszti RA, Khvorova A, Aronin N, Sava V. Chitosan-mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Tech. 2018;43:453-460.

  442. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJM. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19:5194-5201.

  443. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67:657-685.

  444. Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol. 2004;33:545-557.

  445. Xu J, Winter FD, Farrokhi C, Rockenstein E, Mante M, Adame A, Cook J, Jin X, Kuo-Fen Lee EM. Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer's disease model. Sci Rep. 2016;6:31692.

  446. Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ. Decreasing the expression of PI-CALM reduces endocytosis and the activity of p-secretase: implications for Alzheimer's disease. BMC Neurosci. 2016;17:50.

  447. Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, Verma IM, Masliah E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci. 2005;8(10):1343-1349.

  448. Orlacchio A, Bernardi G, Orlacchio A, Martino S. RNA interference as a tool for Alzheimer's disease therapy. Mini Rev Med Chem. 2007;7(11):1166-1176.

  449. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61-77.

  450. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16.

  451. Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system:mechanisms and experimental considerations. J Pharmaceut Sci. 2010;99:1654-1673.

  452. Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, Dever SM, Nair M, El-Hage N. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7:1862.

  453. Kim ID, Shin JH, Kim SW, Choi S, Ahn J, Han PL, Park JS, Lee JK. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther. 2012;20(4):829-839.

  454. Huang B, Tabata Y, Gao JQ. Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases. J Control Release. 2012;162:464-473.

  455. Pardeshi CV, Belgamwar VS. Direct nose-to-brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier:an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10(7):957-972.

  456. Martinez-Morales PL, Revilla A, Ocana I, Gonzalez C, Sainz P, McGuire D. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 2013;9:685-699.

  457. Lee JH, Oh IH, Lim HK. Stem cell therapy: a prospective treatment for Alzheimer's disease. Psychiatry Investig. 2016;13(6):583-589.

  458. Amemori T, Jendelova P, Ruzicka J, Urdzikova LM, Sykova E. Alzheimer's disease:mechanism and approach to cell therapy. Int J Mol Sci. 2015;16:26417-26451.

  459. Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17:385-395.

  460. Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuro-pathology. 2013;33:491-504.

  461. Oliveira AA Jr, Hodges HM. Alzheimer's disease and neural transplantation as prospective cell therapy. Curr Alzheimer Res. 2005;2:79-95.

  462. Lee HJ, Lim IJ, Park SW, Kim YB, Ko Y, Kim SU. Human neural stem cells genetically modified to express human nerve growth factor (NGF) gene restore cognition in the mouse with ibotenic acid-induced cognitive dysfunction. Cell Transplant. 2012;21(11):2487-2496.

  463. Park D, Joo SS, Kim TK. Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals. Cell Transplant. 2012;21(1):365-371.

  464. Park D, Lee HJ, Joo SS. Human neural stem cells overexpressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol. 2012;234(2):521-526.

  465. Marei HE, Farag A, Althani A. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model. J Cell Physiol. 2015;230(1):116-130.

  466. Lanza RP, Atala A. Essentials of stem cell biology. 2nd ed. Amsterdam: Elsevier/Academic Press; 2014.

  467. Sun C, Shao J, Su L, Zhao J, Bi J, Yang S. Cholinergic neuron-like cells derived from bone marrow stromal cells induced by tricyclodecane-9-yl-xanthogenate promote functional recovery and neural protection after spinal cord injury. Cell Transplant. 2013;22:961-975.

  468. Wu QY, Li J, Feng ZT, Wang TH. Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer's disease rat model. Neurosci Lett. 2007;417:281-285.

  469. Zhang L, Tan X, Dong C, Zou L, Zhao H, Zhang X. In vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton's jelly, into choline acetyltransferase (ChAT)-positive cells. Int J Dev Neurosci. 2012;30:471-477.

  470. Takata K, Kitamura Y, Yanagisawa D, Morikawa S, Morita M, Inubushi T. Microglial transplantation increases amyloid-beta clearance in Alzheimer model rats. FEBS Lett. 2007;581:475-478.

  471. Yun HM, Kim HS, Park KR, Shin JM, Kang AR, Il Lee K. Placenta-derived mesenchymal stem cells improve memory dysfunction in an Abeta1-42-infused mouse model of Alzheimer's disease. Cell Death Dis. 2013;4:e958.

  472. Kim KS, Kim HS, Park JM, Kim HW, Park MK, Lee HS. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer's disease model. Neurobiol Aging. 2013;34:2408-2420.

  473. Ding H, Zhang H, Ding H, Li D, Yi X, Ma X. Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol. 2017;14(4):693-701.

  474. Park HW, Moon HE, Kim HS, Paek SL, Kim Y, Chang JW. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res. 2015;93:1814-1825.

  475. Zhou X, Gu J, Gu Y, He M, Bi Y, Chen J. Human umbilical cordderived mesenchymal stem cells improve learning and memory function in hypoxic-ischemic brain-damaged rats via an IL-8-mediated secretion mechanism rather than differentiation pattern induction. Cell Physiol Biochem. 2015;35:2383-2401.

  476. Lee JK, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer's disease mouse model. Neurosci Lett. 2009;450(2):136-141.

  477. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. Stem Cells. 2010;28(2):329-343.

  478. Malm TM, Koistinaho M, Parepalo M. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis. 2005;18(1):134-142.

  479. Lerou P. Embryonic stem cell derivation from human embryos. Methods Mol Biol. 2011;767:31-35.

  480. Kooreman NG, Wu JC. Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. J R Soc Interface. 2010;7(6):S753-S763.

  481. Ratajczak MZ, Jadczyk T, Pedziwiatr D, Wojakowski W. New advances in stem cell research: practical implications for regenerative medicine. Pol Arch Med Wewn. 2014;124:417-426.

  482. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494:100-104.

  483. Tang J, Xu H, Fan X, Li D, Rancourt D, Zhou G. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta(1-40) injured rats. Neurosci Res. 2008;62:86-96.

  484. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275-280.

  485. Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A. 2008;105:3392-3397.

  486. Krencik R, Weick JP, Liu Y, Zhang ZJ, Zhang SC. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011;29:528-534.

  487. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 2011;480:547-551.

  488. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells. 2007;25: 1931-1939.

  489. Tang J, Xu H, Fan X. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta(1-40) injured rats. Neurosci Res. 2008;62(2):86-96.

  490. Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation. 2009;78(2-3):59-68.

  491. Takahashi K, Yamanaka S. A developmental framework for induced pluripotency. Development. 2015;142:3274-3285.

  492. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-1920.

  493. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108:7838-7843.

  494. Arber C, Lovejoy C, Wray S. Stem cell models of Alzheimer's disease: progress and challenges. Alzheimers Res Ther. 2017;9:42.

  495. Danielyan L, Von Ameln-Mayerhofer A, Bernhard F. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res. 2011;14:3-16.

  496. Jevtic S, Sengar AS, Salter MW, McLaurin J. The role of the immune system in Alzheimer disease: Etiology and treatment. Aging Res Rev. 2017;40:84-94.

  497. Van Dyck CH. Anti-amyloid-b monoclonal antibodies for Alzheimer's disease: pitfalls and promise. Biol Psychiatry. 2018;83(4):311-319.

  498. Lemere CA. Immunotherapy for Alzheimer's disease: Hoops and hurdles. Mol Neurodegener. 2013;8:36.

  499. Freskgard PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology. 2016;120:38-55.

  500. Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364-389.

  501. Cattepoel S, Hanenberg M, Kulic L, Nitsch RM. Chronic intranasal treatment with an anti-Ab30-42 scFv antibody ameliorates amyloid pathology in a transgenic mouse model of Alzheimer's disease. PLoS One. 2011;6(4):18296.

  502. Agadjanyan MG, Zagorski K, Petrushina I, Davtyan H, Kazarian K, Antonenko M, Davis J, Bon C, Blurton-Jones M, Cribbs DH, Ghochikyan A. Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau:characterization and therapeutic potency. Mol Neurodegener. 2017;12:33.

  503. Dario C, Claudia B, Francesca R, Davide B, Benjamin LD, Orfeu F, Alice G, Simona M, Gianluigi F, Lara OG, Francisco W, Massimo M, Patrick C, Julien N, Karine A. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomed Nanotechnol Biol Med. 2017;S1549-9634(17):30584-30581.

  504. Tengfei L, Vandesquill M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, Ganneau C, Maskos U, Czech C, Grueninger F, Duyckaerts C, Dhenain M, Bay S, Delatour B, Lafaye P. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1-10.

  505. Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, Tuchman M, Gass A, Fiebach JB, Hill D. Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. Alzheimers Res Ther. 2016;8:18.

  506. Abbott A, Dolgin E. Failed Alzheimer's trial does not kill leading theory of disease. Nature. 2016;540:15-16.

  507. Panza F, Solfrizzi V, Imbimbo BP, Logroscino G. Amyloid-directed monoclonal antibodies for the treatment of Alzheimer's disease:the point of no return? Expert Opin Biol Ther. 2014;14:1465-1476.

  508. Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials:the way forward. Expert Rev Clin Immunol. 2014;10(2014):405-419.

  509. Landen JW, Zhao Q, Cohen S, Borrie M, Woodward M, Billing Jr CB, Bales K, Alvey C, Mc-Cush F, Yang J, Kupiec JW, Bednar MM. Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: A phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol. 2013;36(1):14-23.

  510. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature. 2016;537:50-56.

  511. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebocontrolled phase I trial. Lancet. 2008;372:216-223.

  512. Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M. Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer's disease: randomised, double-blind, placebocontrolled, first-in-human study. Lancet Neurol. 2012;11:597-604.

  513. Arai H, Suzuki H, Yoshiyama T. Vanutide cridificar and the QS-21 adjuvant in Japanese subjects with mild to moderate Alzheimer's disease: results from two phase 2 studies. Curr Alzheimer Res. 2015;12:242-254.

  514. Davtyan H, Bacon A, Petrushina I, Zagorski K, Cribbs DH, Ghochikyan A, Agadjanyan MG. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines. Hum Vaccin Immunother. 2014;10:1248-1255.

  515. Balshaw DM, Philbert M, Su WA. Research strategies for safety evaluation of nanomaterials. Part III: Nanoscale technologies for assessing risk and improving public health. Toxicol Sci. 2005;88: 298-306.

  516. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci. 2006;90:23-32.

  517. Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ. Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci. 2005;88:12-17.

  518. Thomas K, Sayre P. Research strategies for safety evaluation of nanomaterials, part I:evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci. 2005;87:316-321.

  519. Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R. Research strategies for safety evaluation of nanomaterials. Part VII: Evaluating consumer exposure to nanoscale materials. Toxicol Sci. 2006;911:4-9.

  520. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB. Research strategies for safety evaluation of nanomaterials. Part IV: Risk assessment of nanoparticles. Toxicol Sci. 2006;89:42-50.

  521. Warheit DB, Borm PJ, Hennes C, Lademann J. Testing strategies to establish the safety of nanomaterials:conclusions of an ECETOC workshop. Inhal Toxicol. 2007;19:631-643.

  522. Li J, Martin FL. Current perspective on nanomaterial-induced adverse effects: neurotoxicity as a case example. In: Jiang X, Gao H, editors. Current perspective on nanomaterial-induced adverse effects. London: Academic Press; 2017. p. 75-98.

  523. Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood-brain barrier. Chem Rev. 2013;113:1877-1903.

  524. Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Toxicity of polymeric nano-particles in vivo and in vitro. J Nanopart Res. 2014;16(6):2379.

  525. Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomed Nano-technol Biol Med. 2012;8:S51-S58.

  526. Ginzburg VV, Balijepalli S. Modelling the thermodynamics of the interaction of nanoparticles with cell membrane. Nano Lett. 2007;7(12):3716-3722.

  527. Le Bihan O, Bonnafous P, Marak L, Bickel T, Trepout S, Mornet S, De Haas F, Talbot H, Taveau JC, Lambert OJ. Cryo-electron tomography of nanoparticle transmigration into liposome. J Struct Biol. 2009;168(3):419-425.

  528. Sharma A, Muresanu DF, Patnaik R, Sharma HS. Size- and age dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol. 2013;48(2):386-396.

  529. Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D. Microglial response to gold nanoparticles. ACS Nano. 2010;4(5):2595-2606.

  530. Platel A, Carpentier R, Becart E, Mordacq G, Betbeder D, Nesslany F. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J Appl Toxicol. 2016;36(3):434-444.

  531. Wang B, Feng W, Zhu M, Wang Y, Wang M, Gu Y, Ouyang H, Wang H, Li M, Zhao Y, Chai Z, Wang H. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res. 2009;11:41-53.

  532. Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476-4489.

  533. Wu J, Ding TT, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013;34:243-253.

  534. Dhakshinamoorthy V, Manickam V, Perumal E. Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotox Res. 2017;32(2):187-203.

  535. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6-7):437-445.

  536. Yuan ZY, Hu YL, Gao JQ. Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS One. 2015;10(8):e134722.

  537. Aspden T, Illum L, Skaugrud O. The effect of chronic nasal application of chitosan solutions on cilia beat frequency in guinea pigs. Int J Pharm. 1997;153:137-146.

  538. Haffejee N, Du Plessis J, Muller DG, Schultz C, Kotze AF, Goosen C. Intranasal toxicity of selected absorption enhancers. Pharmazie. 2001;56:882-888.

  539. Vaka SRK, Murthy SN, Repka MA, Nagy T. Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid. J Pharm Sci. 2011;100:3139-3145.

CITED BY
  1. Pandey Abhijeet, Dhas Namdev, Deshmukh Prashant, Caro Carlos, Patil Pravin, Luisa García-Martín Maria, Padya Bharath, Nikam Ajinkya, Mehta Tejal, Mutalik Srinivas, Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review, Coordination Chemistry Reviews, 409, 2020. Crossref

  2. Kalipillai Pandurangan, Mani Ethayaraja, Adsorption of the amyloid β40 monomer on charged gold nanoparticles and slabs: a molecular dynamics study, Physical Chemistry Chemical Physics, 23, 34, 2021. Crossref

  3. Dhas Namdev, Yadav Dattatray, Singh Ashutosh, Garkal Atul, Kudarha Ritu, Bangar Priyanka, Savjani Jignasa, Pardeshi Chandrakantsing V., Garg Neha, Mehta Tejal, Direct transport theory: From the nose to the brain, in Direct Nose-to-Brain Drug Delivery, 2021. Crossref

  4. Riccardi Claudia, Napolitano Filomena, Montesarchio Daniela, Sampaolo Simone, Melone Mariarosa Anna Beatrice, Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases, Pharmaceutics, 13, 11, 2021. Crossref

  5. Dhas Namdev, Mehta Tejal, Sharma Shilpa, Garkal Atul, Yadav Dattatray, Hariharan Kartik, Shamjetshabam Babeeta, Khot Shubham, Kudarha Ritu, Bangar Priyanka, Arbade Gajanan, Kalyankar Pratap, Intranasal gene therapy for the treatment of neurological disorders, in Direct Nose-to-Brain Drug Delivery, 2021. Crossref

  6. Costa Cláudia Pina, Barreiro Sandra, Moreira João Nuno, Silva Renata, Almeida Hugo, Sousa Lobo José Manuel, Silva Ana Catarina, In Vitro Studies on Nasal Formulations of Nanostructured Lipid Carriers (NLC) and Solid Lipid Nanoparticles (SLN), Pharmaceuticals, 14, 8, 2021. Crossref

  7. Dhas Namdev, Kudarha Ritu, Pandey Abhijeet, Nikam Ajinkya N., Sharma Shilpa, Singh Ashutosh, Garkal Atul, Hariharan Kartik, Singh Amanpreet, Bangar Priyanka, Yadhav Dattatray, Parikh Dhaivat, Sawant Krutika, Mutalik Srinivas, Garg Neha, Mehta Tejal, Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies, Journal of Controlled Release, 333, 2021. Crossref

  8. Dhas Namdev, García Mónica C., Kudarha Ritu, Pandey Abhijeet, Nikam Ajinkya Nitin, Gopalan Divya, Fernandes Gasper, Soman Soji, Kulkarni Sanjay, Seetharam Raviraja N., Tiwari Ruchi, Wairkar Sarika, Pardeshi Chandrakantsing, Mutalik Srinivas, Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy, Journal of Controlled Release, 346, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain