Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
IF: 2.9 5-Year IF: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Print: 0743-4863
ISSN Online: 2162-660X

Volumes:
Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2015012360
pages 461-502

Quantum Dots and their Potential Role in Cancer Theranostics

S. K. Tripathi
Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh-160014, India
Gurvir Kaur
Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh-160014, India
Rajneet Kaur Khurana
University Grants Commission Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
Sonia Kapoor
University Institute of Engineering and Technology, Panjab University, Chandigarh-160014, India
Bhupinder Singh
University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India 160014; UGC Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India 160014

ABSTRACT

The emergence of cancer nanomedicine is the result of fruitful advances in the fields of nanotechnology, bioimaging, formulation development, and molecular biology. Quantum dots (QDs) are the luminescent nanocrystals (NCs) that provide a multifunctional platform for imaging the biosystems following controlled delivery of therapeutic drugs, proteins, peptides, oligonucleotides, and genes. These engineered fluorescent probes with integrated imaging and carrier functionalities have become excellent tools for molecular diagnostics and delivery of therapeutics molecules. Flexible surface chemistry, unique optical properties, high sensitivity, and multiplexing capabilities of QDs certainly make them a most promising tool for personalized medicine. This review focuses on state-of-art advances in synthesizing QDs and highlights the approaches used for functionalization of QDs with desired ligands for targeted carriage to specific sites. Discussed is the role of QDs in antitumor therapy through drug delivery and gene delivery and the recently emerged photodynamic therapy (PDT). We also endeavor to critically address the major impediments in the clinical development of these multifunctional nanoplatforms, with a special focus on plausible advancements for the near future.