Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Therapeutic Drug Carrier Systems
IF: 2.9 5-Year IF: 3.72 SJR: 0.573 SNIP: 0.551 CiteScore™: 2.43

ISSN Print: 0743-4863
ISSN Online: 2162-660X

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v27.i6.20
pages 509-545

Microencapsulation: An Acclaimed Novel Drug-Delivery System for NSAIDs in Arthritis

K. M. Manjanna
Department of Pharmaceutics, T.V.M. College of Pharmacy, Bellary Karnataka
B. Shivakumar
Department of Pharmaceutical Chemistry, BLDE College of Pharmacy, Bijapur, Karnataka
T. M. Pramod Kumar
JSS University, JSS College of Pharmacy, Mysore, Karnataka

ABSTRACT

Arthritis refers to different medical conditions associated with disorders of the primary structures that determine joint functioning, such as bones, cartilage, and synovial membranes. Drug discovery and delivery to retard the degeneration of joint tissues are challenging. Current treatment of different types of arthritis such as osteoarthritis, rheumatoid arthritis, septic arthritis, juvenile idiopathic arthritis, and ankylosing spondylitis involves the administration of nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, diclofenac, aceclofenac, ibuprofen, flurbiprofen, indomethacin piroxicam, dexibuprofen, ketoprofen, nabumetone, nimesulide, and naproxen, mainly by the oral, parenteral, or topical route. However, the frequent dosing that is required with NSAIDs often leads to patient noncompliance, so drug-delivery technologies should be developed to reduce the frequency of dosing and to allow sustained release of medications. Microencapsulation is one of the novel drug-delivery technologies employed to sustain drug release. This method reduces dosing and eliminates gastrointestinal irritation, thus ultimately improving patient compliance in the pharmacotherapy of arthritis. We provide a comprehensive overview of several microencapsulation technologies used in the treatment of arthritis that may reduce the dose-related adverse effects caused by NSAIDs.


Articles with similar content:

Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 5
Shaivad Shabee Hulhasan Abadi, Afrasim Moin, Gangadharappa Hosahalli Veerabhadrappa
Current Nanotechnological Strategies for Treating Glaucoma
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 5
Goutam Rath, Tarun Garg, Amit Kumar Goyal, Gagandeep Goyal
Conundrum and Therapeutic Potential of Curcumin in Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 4
Javed Ali, Sanjula Baboota, Anil Kumar, Alka Ahuja
Extrusion-Spheronization: Process Variables and Characterization
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.26, 2009, issue 3
A. Agarwal, Gurpreet Singh, Vivek Ranjan Sinha, M. K. Agrawal, D. Ghai
Enhancement of Transdermal Delivery of Heparin by Various Physical and Chemical Enhancement Techniques
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.26, 2009, issue 6
S. S. Lanke, Ajay K. Banga, J. G. Strom